INTEGRATED CIRCUITS

DATA SHEET

SAA7205HMPEG-2 systems demultiplexer

Preliminary specification
File under Integrated Circuits, IC02

1997 Jan 21

SAA7205H

CONTENT	rs	7.9 7.10	Interfacing to combined audio/video decode Interfacing to SAA9042 and SAA5270 teleto	
1	FEATURES	7.10	decoders and SAA7183 EURO-DENC	
2	GENERAL DESCRIPTION	7.11	Program clock reference processing	
3	QUICK REFERENCE DATA	7.12	Time stamp processing (PTS/DTS)	
4	ORDERING INFORMATION	7.13 7.14	Output buffering for audio and video Microcontroller interfacing	
5	BLOCK DIAGRAM	7.14.1	Short filter module	
6	PINNING	7.14.2	Long filter module	
7	FUNCTIONAL DESCRIPTION	7.14.3	Subtitling filter	
7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9 7.1.10 7.1.11 7.1.11.1 7.1.11.2 7.1.11.3 7.2	Functional overview MPEG-2 syntax parser Error handling Teletext filter Generic data filter High speed data filter Video data filter Audio data filter Program clock reference processor Time stamp processors FIFO buffers Microcontroller interface Short filters Long filters Subtitling filter MPEG-2 systems parsing Error handling	8 9 10 11 12 13 14 15 15.1 15.2 15.3 15.4 16	PROGRAMMING THE DEMULTIPLEXER LIMITING VALUES HANDLING DC CHARACTERISTICS AC CHARACTERISTICS APPENDIX PACKAGE OUTLINE SOLDERING Introduction Reflow soldering Wave soldering Repairing soldered joints DEFINITIONS LIFE SUPPORT APPLICATIONS	
7.4 7.5 7.6 7.7 7.8	Interfacing to the external descrambler High speed data interfacing Interfacing to Philips SAA7201 video decoder Interfacing to a third party video decoder Interfacing to SAA2500 and third party audio decoders			

MPEG-2 systems demultiplexer

SAA7205H

1 FEATURES

- Input data fully compliant with the Transport Stream (TS) definition of the MPEG-2 systems specification (International Standard: November 1994)
- Input data signals: Forward Error Correction (FEC) or descrambler interface
 - modem data input bus (8-bit wide)
 PKTDAT7 to PKTDAT0
 - valid input data indicator (PKTDATV)
 - erroneous packet indicator (PKTBAD/PKTBAD)
 - first packet byte indicator (PKTSYNC)
 - byte strobe signal [for the asynchronous mode only (PKTBCLK)]
- The interface can be configured to either of two modes:
 - asynchronous mode; PKTBCLK < 9 MHz, for connection to a modem (e.g. FEC)
 - synchronous mode; PKTBCLK is not used for connection to an external descrambler operating at 9 MHz. The descrambler chip clock (9 MHz; 33% duty cycle) is generated and output to the demultiplexer.

The descrambler chip clock [DCLK (9 MHz, 33% duty cycle)] is generated and output by the demultiplexer

- External memory; standard 32K \times 8-bit static RAM. Required typical access time \leq 50 ns, write pulse width $(t_{WP}) \leq$ 35 ns.
- Effective bit rate: f_{bit} ≤ 72 MHz
- Control Interface; 8-bit multiplexed data/address (MDAT7 to MDAT0), memory mapped I/O (P90CE201 microcontroller parallel bus compatible), in combination with two microcontroller interrupt signals (IRQ and NMI). In addition, a number of address input pins (MA9 to MA2) allow direct access to a selected set of demultiplexer registers.
- · Output ports:

Video; two alternative applications;

- third party video decoder compatible (master or slave horizontal or vertical sync generation)
- Philips SAA7201 compatible (via general purpose output)

Audio; third party audio decoder, or Philips SAA2500 compatible

Audio/video; third party combined A/V decoder compatible, (programmable)

Teletext; a Teletext Clock/Teletext Data (TTC/TTD) based serial interface to selected teletext decoders (e.g. SAA9042). Alternatively, this interface can be programmed to provide data for Vertical Blanking Interval (VBI) insertion of teletext data. The interface therefore includes a teletext data request input (TTR). In this mode, the interface is compatible with the SAA7183 (EURO-DENC) TXT interface.

HS Data; high-speed data output, outputting entire transport packets, packet payloads, PES packet payloads, or sections (programmable) at byte clock frequency (9 MHz). In the test mode it is capable of outputting copies of either video, audio or other data streams (programmable).

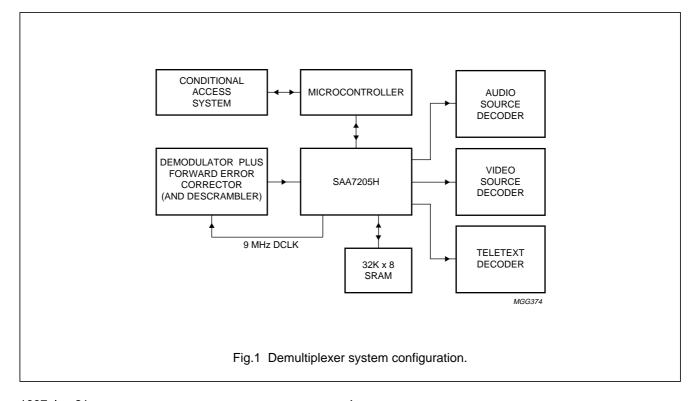
HS pins are combined with the general purpose interface. The general purpose interface is bidirectional, and can therefore, be used as an alternative transport stream input.

- Descrambler; 8-bit wide data input interface, combined with the modem input bus. A descrambler device may output a descrambled transport stream at 9 MByte/s.
 A 9 MHz descrambler clock is generated and output by the demultiplexer.
- Microcontroller support; only for control, no specific demultiplexing tasks are performed by the microcontroller. However, parsing and processing of Program Specific Information (PSI), and Service Information (SI) is left to the microcontroller.
- Error handling; stream dependent error handling algorithms, invoked either if the PKTBAD/PKTBAD input signal is set, or if the transport_error_indicator bit (MPEG-2 syntax) is set or if the parser detects an MPEG-2 syntax error. Different handling algorithms are applied for the various output ports.

MPEG-2 systems demultiplexer

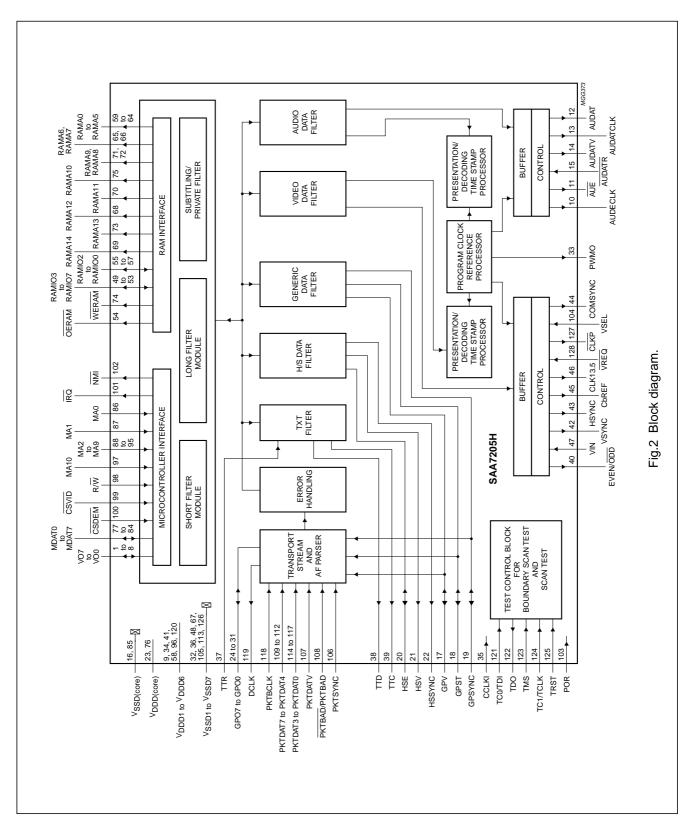
SAA7205H

2 GENERAL DESCRIPTION


This document specifies the MPEG-2 systems demultiplexer IC, SAA7205H, for use in MPEG-2 based digital TV receivers, possibly incorporating conditional access. Such receivers are to be implemented in, for instance, a Digital Video Broadcasting (DVB) set-top box, or Integrated Receiver Decoder (IRD). An example of a demultiplexer/descrambler system configuration, containing a channel decoder module, source decoders, a system microcontroller and a conditional access system is shown in Fig.1. The main function of the demultiplexer is to separate relevant data from an incoming MPEG-2 systems compliant data stream and pass it to both the individual source decoders and to the system microcontroller. To support descrambling, the demultiplexer interfaces with the descrambler part of a conditional access system (optional). The demultiplexer therefore generates a 9 MHz descrambler chip clock.

3 QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{DDD}	digital supply voltage		4.5	5.0	5.5	V
V _{DDD(core)}	digital supply voltage for core		3.0	3.3	3.6	V
P _{tot}	total power consumption		_	_	380	mW
f _{CLK}	clock frequency	f _{byte} ≤ 9 MHz	_	_	27	MHz
T _{amb}	operating ambient temperature		0	_	70	°C


4 ORDERING INFORMATION

TYPE	PACKAGE			
NUMBER	NAME	DESCRIPTION	VERSION	
SAA7205H	QFP128	plastic quad flat package; 128 leads (lead length 1.6 mm); body $28 \times 28 \times 3.4$ mm; high stand-off height	SOT320-2	

SAA7205H

5 BLOCK DIAGRAM

MPEG-2 systems demultiplexer

SAA7205H

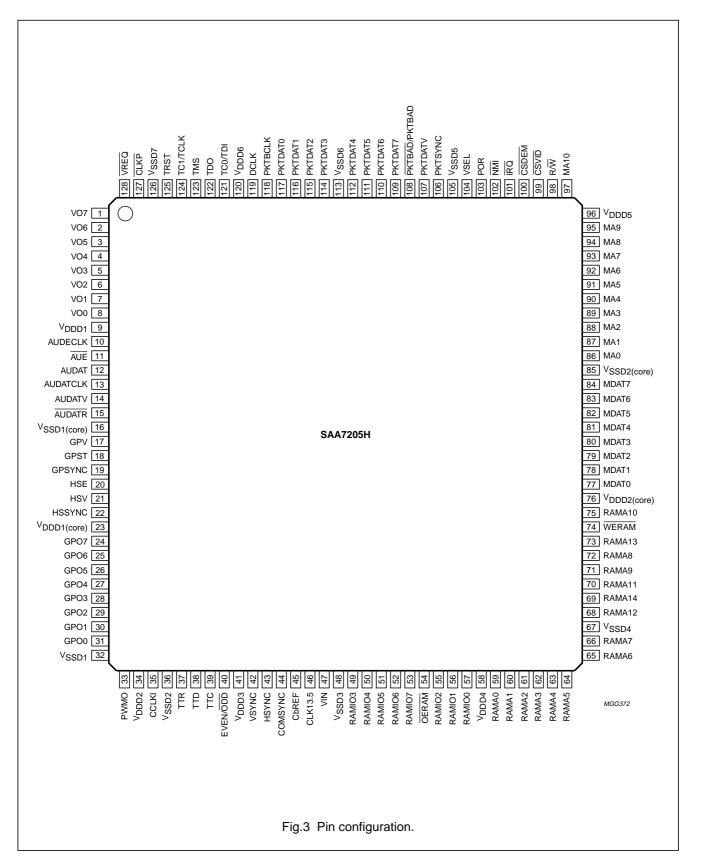
6 PINNING

SYMBOL	PIN	I/O	DESCRIPTION	
VO7	1	I/O	data output bit 7 to video decoder (shared with microcontroller data)	
VO6	2	I/O	data output bit 6 to video decoder (shared with microcontroller data)	
VO5	3	I/O	data output bit 5 to video decoder (shared with microcontroller data)	
VO4	4	I/O	data output bit 4 to video decoder (shared with microcontroller data)	
VO3	5	I/O	data output bit 3 to video decoder (shared with microcontroller data)	
VO2	6	I/O	data output bit 2 to video decoder (shared with microcontroller data)	
VO1	7	I/O	data output bit 1 to video decoder (shared with microcontroller data)	
VO0	8	I/O	data output bit 0 to video decoder (shared with microcontroller data)	
V _{DDD1}	9	supply	digital supply voltage 1 (+5 V)	
AUDECLK	10	0	audio decoder clock output [equals CCLKI/M (programmable)]	
AUE	11	0	audio data error indicator output (active LOW)	
AUDAT	12	0	data output to audio decoder (elementary stream)	
AUDATCLK	13	0	audio data clock output (frequency range 32 to 448 kHz; 9 Mbit/s)	
AUDATV	14	0	audio data valid indicator output	
AUDATR	15	I	audio data request input (active LOW)	
V _{SSD1(core)}	16	GND	digital ground 1 for core	
GPV	17	I/O	valid data byte indicator input/output	
GPST	18	I/O	byte strobe signal input/output (equals 9 MHz gated byte clock)	
GPSYNC	19	I/O	packet sync byte indicator input/output	
HSE	20	I/O	indicates erroneous HS data input/output	
HSV	21	0	valid high speed data indicator	
HSSYNC	22	0	indicates the first output byte of either a packet or payload	
V _{DDD1(core)}	23	supply	digital supply voltage 1 for core (+3.3 V)	
GPO7	24	I/O	high speed byte output bit 7 for transport packets/general purpose byte output (e.g. for SAA7201)/alternative transport stream input	
GPO6	25	I/O	high speed byte output bit 6 for transport packets/general purpose byte output (e.g. for SAA7201)/alternative transport stream input	
GPO5	26	I/O	high speed byte output bit 5 for transport packets/general purpose byte output (e.g. for SAA7201)/alternative transport stream input	
GPO4	27	I/O	high speed byte output bit 4 for transport packets/general purpose byte output (e.g. for SAA7201)/alternative transport stream input	
GPO3	28	I/O	high speed byte output bit 3 for transport packets/general purpose byte output (e.g. for SAA7201)/alternative transport stream input	
GPO2	29	I/O	high speed byte output bit 2 for transport packets/general purpose byte output (e.g. for SAA7201)/alternative transport stream input	
GPO1	30	I/O	high speed byte output bit 1 for transport stream input (e.g. for SAA7201)/alternative transport packets/general purpose byte output (e.g. for SAA7201)/alternative transport stream input	
GPO0	31	I/O	high speed byte output bit 0 for transport packets/general purpose byte output (e.g. for SAA7201)/alternative transport stream input	
V _{SSD1}	32	GND	digital ground 1	
PWMO	33	0	pulse width modulated VCO control signal output (local STC)	

SAA7205H

SYMBOL	PIN	I/O	DESCRIPTION
V_{DDD2}	34	supply	digital supply voltage 2 (+5 V)
CCLKI	35	1	27 MHz demultiplexer chip clock Input
V _{SSD2}	36	GND	digital ground 2
TTR	37	- 1	teletext data request input (for VBI insertion of TXT)
TTD	38	0	serial teletext data output (6.75 or 6.9375 Mbit/s)
TTC	39	0	TXT clock (6.75 MHz = CCLKI/4)
EVEN/ODD	40	0	field parity output, internally generated, locked to COMSYNC
V_{DDD3}	41	supply	digital supply voltage 3 (+5 V)
VSYNC	42	0	vertical sync output, locked to CCLKI and optionally VIN
HSYNC	43	0	horizontal sync output, internally generated
COMSYNC	44	0	(CCIR601) composite sync (50 and 60 Hz)
CbREF	45	0	indicating U samples in UY and VY video decoder output
CLK13.5	46	0	equals CCLKI/2
VIN	47	I	receiver local vertical sync input, locked to CCLKI (optional)
V _{SSD3}	48	GND	digital ground 3
RAMIO3	49	I/O	external SRAM input/output bus bit 3
RAMIO4	50	I/O	external SRAM input/output bus bit 4
RAMIO5	51	I/O	external SRAM input/output bus bit 5
RAMIO6	52	I/O	external SRAM input/output bus bit 6
RAMIO7	53	I/O	external SRAM input/output bus bit 7
OERAM	54	0	output enable for external 32K × 8 SRAM (active LOW)
RAMIO2	55	I/O	external SRAM input/output bus bit 2
RAMIO1	56	I/O	external SRAM input/output bus bit 1
RAMIO0	57	I/O	external SRAM input/output bus bit 0
V_{DDD4}	58	supply	digital supply voltage 4 (+5 V)
RAMA0	59	0	external SRAM address bus output bit 0
RAMA1	60	0	external SRAM address bus output bit 1
RAMA2	61	0	external SRAM address bus output bit 2
RAMA3	62	0	external SRAM address bus output bit 3
RAMA4	63	0	external SRAM address bus output bit 4
RAMA5	64	0	external SRAM address bus output bit 5
RAMA6	65	0	external SRAM address bus output bit 6
RAMA7	66	0	external SRAM address bus output bit 7
V _{SSD4}	67	GND	digital ground 4
RAMA12	68	0	external SRAM address bus output bit 12
RAMA14	69	0	external SRAM address bus output bit 14
RAMA11	70	0	external SRAM address bus output bit 11
RAMA9	71	0	external SRAM address bus output bit 9
RAMA8	72	0	external SRAM address bus output bit 8
RAMA13	73	0	external SRAM address bus output bit 13
WERAM	74	0	write enable output for external SRAM (active LOW)

SAA7205H


SYMBOL	PIN	I/O	DESCRIPTION	
RAMA10	75	0	external SRAM address bus output bit 10	
V _{DDD2(core)}	76	supply	digital supply voltage 2 for core (+3.3 V)	
MDAT0	77	I/O	microcontroller bidirectional data bus bit 0	
MDAT1	78	I/O	microcontroller bidirectional data bus bit 1	
MDAT2	79	I/O	microcontroller bidirectional data bus bit 2	
MDAT3	80	I/O	microcontroller bidirectional data bus bit 3	
MDAT4	81	I/O	microcontroller bidirectional data bus bit 4	
MDAT5	82	I/O	microcontroller bidirectional data bus bit 5	
MDAT6	83	I/O	microcontroller bidirectional data bus bit 6	
MDAT7	84	I/O	microcontroller bidirectional data bus bit 7	
V _{SSD2(core)}	85	GND	digital ground 2 for core	
MA0	86	ı	microcontroller MSByte/LSByte indicator input bit 0	
MA1	87	ı	microcontroller address/data indicator input bit 1	
MA2	88	I	microcontroller address input bit 2 for direct access to selected registers	
MA3	89	ı	microcontroller address input bit 3 for direct access to selected registers	
MA4	90	ı	microcontroller address input bit 4 for direct access to selected registers	
MA5	91	ı	microcontroller address input bit 5 for direct access to selected registers	
MA6	92	I	microcontroller address input bit 6 for direct access to selected registers	
MA7	93	ı	microcontroller address input bit 7 for direct access to selected registers	
MA8	94	ı	microcontroller address input bit 8 for direct access to selected registers	
MA9	95	ı	microcontroller address input bit 9 for direct access to selected registers	
V_{DDD5}	96	supply	digital supply voltage 5 (+5 V)	
MA10	97	ı	microcontroller direct addressing/indirect addressing indicator input bit 10	
R/W	98	I	read/write input selection	
CSVID	99	ı	(audio)/video decoder chip select input (active LOW)	
CSDEM	100	I	demultiplexer chip select input (active LOW)	
ĪRQ	101	0	interrupt request output for microcontroller (active LOW, open-drain)	
NMI	102	0	non-maskable interrupt output for VOUT bus access handling (open-drain)	
POR	103	I	power-on reset input	
VSEL	104	ı	video input select signal (bus control by microcontroller)	
V _{SSD5}	105	GND	digital ground 5	
PKTSYNC	106	I	indicates the first input byte (sync) of a transport packet	
PKTDATV	107	ı	valid input data indicator	
PKTBAD/ PKTBAD	108	I	packet error indicator input (programmable polarity)	
PKTDAT7	109	1	8-bit wide modem data input bit 7	
PKTDAT6	110	1	8-bit wide modem data input bit 6	
PKTDAT5	111	ı	8-bit wide modem data input bit 5	
PKTDAT4	112	ı	8-bit wide modem data input bit 4	
V _{SSD6}	113	GND	digital ground 6	
PKTDAT3	114	ı	8-bit wide modem data input bit 3	

MPEG-2 systems demultiplexer

SAA7205H

SYMBOL	PIN	1/0	DESCRIPTION
PKTDAT2	115	I	8-bit wide modem data input bit 2
PKTDAT1	116	I	8-bit wide modem data input bit 1
PKTDAT0	117	I	8-bit wide modem data input bit 0
PKTBCLK	118	I	byte strobe input signal (< 9 MHz)
DCLK	119	0	9 MHz descrambler chip clock output (33% duty cycle)
V_{DDD6}	120	supply	digital supply voltage 6 (+5 V)
TC0/TDI	121	I	scan test data input/boundary scan test data input
TDO	122	0	boundary scan test data output
TMS	123	I	boundary scan test input mode select
TC1/TCLK	124	I	scan test clock input/ boundary scan test clock input
TRST	125	I	boundary scan test reset input (LOW in normal operation)
V _{SSD7}	126	GND	digital ground 7
CLKP	127	0	gated clock output signal indicating valid data (9 MHz = CCLKI/3; active LOW)
VREQ	128	I	video data request input (active LOW)

SAA7205H

MPEG-2 systems demultiplexer

SAA7205H

7 FUNCTIONAL DESCRIPTION

7.1 Functional overview

A schematic diagram of the internal structure of the MPEG-2 demultiplexer is shown in Fig.2. The diagram illustrates the main functional entities in the demultiplexer.

7.1.1 MPEG-2 SYNTAX PARSER

The MPEG-2 syntax parser, parsing transport streams which comply with the MPEG-2 systems specification (International Standard, November 1994).

7.1.2 ERROR HANDLING

Error handling is invoked whenever an error is detected. Error handling is started on the basis of either the PKTBAD/PKTBAD input signal (driven by the FEC decoder), or the transport_error_indicator in the transport packet header, or discovery of a syntax error by the parser.

7.1.3 TELETEXT FILTER

A teletext (TXT) filter, generating a teletext clock (TTC = 6.75 MHz, derived from the chip clock, CCLKI = 27 MHz) and providing a serial TXT data stream (TTD) locked to both TTC and the horizontal video sync (HSYNC) generated by the demultiplexer. In accordance with the DVB specification, TXT data is transported in MPEG-2 PES packets. The incoming transport stream is filtered on the basis of a Programmable Packet Identification (PID) and elementary stream data is stored in a 2 kbyte FIFO buffer. Data is read from the TXT buffer at 6.75 Mbit/s.

The TXT filter can, alternatively, be programmed to a mode in which it provides TXT bits at 6.9375 MHz, on the basis of an external request (TTR). This mode is applied for vertical blanking interval insertion of TXT data. It is compatible with the TXT input of the EURO-DENC (SAA7183).

7.1.4 GENERIC DATA FILTER

A generic data filter is connected to the generic interface. This filter in fact does not filter, but passes the entire transport stream in byte format. A byte strobe signal (GPST), indicating consecutive valid bytes, a valid signal (GPV) and a header sync byte indicator (GPSYNC) are generated.

Alternatively the general purpose interface can be configured to function as transport stream input (GP_Direction = 1; address 0x0700; see Table 13).

7.1.5 HIGH SPEED DATA FILTER

A high speed data filter (HS), retrieves the entire transport packets, packet payloads, PES payloads or sections from the input stream on the basis of a programmable filter. Data is output at the byte clock frequency (DCLK = 9 MHz = CCLKI/3, 33% duty cycle). Selected parts of a data stream are indicated by the HSV signal. The first byte of a data entity is indicated by HSSYNC. The HS filter shares its data output pins with the generic data filter.

It should be noted that in the event that the HS filter is programmed to the section mode, the GP bus only outputs selected sections and not an entire transport stream.

7.1.6 VIDEO DATA FILTER

A video data filter, with a decoder specific interface. This filter selects either Packetized Elementary Stream (PES) data, or Elementary Stream (ES) data (programmable) on the basis of a programmable PID, and passes it to the video FIFO. Presentation Time Stamps and Decoding Time Stamps (PTS and DTS) are obtained from the PES stream and can be read by the microcontroller (optional). Video PES or ES data is output at 9 MHz, via a bidirectional 8-bit wide bus which is time-shared with the microcontroller. Access to the output bus is controlled by the microcontroller using the VSEL signal. The demultiplexer therefore, halts output video data whenever VSEL = 0 and creates a bidirectional communication link between the microcontroller and the video decoder.

7.1.7 AUDIO DATA FILTER

An audio data filter with a decoder specific interface. This filter selects PES or ES data (programmable) on the basis of a programmable PID and passes it to the audio FIFO. Time-stamps are retrieved from audio PES headers and can be read by the microcontroller (optional).

The audio filter can be switched to a mode in which the microcontroller controls audio and video synchronization (software sync). In this mode the filter outputs audio data at 9 Mbit/s. The filter is also capable of handling synchronization independently from the microcontroller. In this situation the audio elementary stream output is (hardware) synchronized to the System Time Clock (STC) automatically. In the hardware synchronization mode, the audio elementary stream data is output via a bit serial data link at a bit rate between 32 to 448 kbit/s. The actual bit rate depends on the type of audio frame that is handled (as specified in the MPEG-2 audio specification).

1997 Jan 21

MPEG-2 systems demultiplexer

SAA7205H

It should be noted that audio and video data can be optionally combined on the output bus to interface to combined audio/video decoders. In this mode the video bus is controlled by the VSEL signal, an audio request signal (AUDATR) and a video request signal (VREQ; optional). Video and audio bytes are output at 9 MBytes and are interleaved with a programmable audio/video ratio.

7.1.8 PROGRAM CLOCK REFERENCE PROCESSOR

The PCR processor is capable of regenerating a local system time clock. This block contains a digital clock recovery loop. Two local clock counters generate an absolute timing value (cycle time approximately 24 hours), which is used to verify the phase relationship between the local system time clock and the transmitter reference clock (Program Clock Reference, or PCR). Two STC counters are implemented to allow for correct handling of PCR discontinuations.

7.1.9 TIME STAMP PROCESSORS

These two PTS/DTS processors are capable of synchronizing attached source decoders. The PTS/DTS processors retrieve time stamps from the incoming transport stream. They also compare emulated time stamps (PTS/DTS) with the local absolute time value generated by the PCR processor. In the event of equality a microcontroller interrupt is generated.

The microcontroller can respond to this pulse by instructing the attached source decoders to start decoding, or to start presentation. For audio, the PTS values are stored in the audio FIFO to be used for synchronization of the FIFO output stream (called lip-sync).

7.1.10 FIFO BUFFERS

There are two FIFO buffers for audio and video (6 kBytes and 768 Bytes respectively), including buffer control, to interface between different clock systems. These FIFOs are filled at byte clock (CCLKI/3) frequency and emptied on the acquisition clocks of the respective source decoders [9 MByte/s for video and combined audio/video,

and a frequency in the range 32 to 448 kbit/s (hardware sync), or 9 Mbit/s (software sync) for audio].

7.1.11 MICROCONTROLLER INTERFACE

The microcontroller interface provides protocol handling for the memory mapped I/O control bus (Philips P90CE201 compatible). This module also contains an interrupt request handler and data filters for retrieval of Program Specific Information (PSI), service information (SI), Electronic Program Guides (EPG) (private sections), subtitling (private sections) and low speed (LS) data (private).

7.1.11.1 Short filters

The short filters select data on the basis of PIDs and a combination of MPEG-2 section addressing fields. Selected data is stored in twelve 1 kByte (constrained random access) buffers. These buffers are located in the external SRAM memory and can be read by the microcontroller. The short filters are capable of monitoring 12 section streams simultaneously.

7.1.11.2 Long filters

The long filters also select data on the basis of PIDs and a combination of MPEG-2 section addressing fields. Selected data is stored in four 4 kByte (constrained random access) buffers. These buffers are located in the external SRAM memory and can be read by the microcontroller. The long filters are capable of monitoring 4 section streams simultaneously.

7.1.11.3 Subtitling filter

The subtitling filter is capable of retrieving transport packet payloads or PES payloads from the input stream, on the basis of a programmable filter. It is also capable of retrieving adaptation field and PES header private data. Data is stored in a 4 kByte FIFO which is located in the external SRAM memory and can be read by the microcontroller.

Table 1 Filter types

FILTER TYPE	NUMBER OF FILTERS	BUFFER SIZE	REMARKS
Short (sections)	12	12 × 1 kByte	_
Long (sections)	4	4 × 4 kByte	_
Subtitling	1	1 × 4 kByte	PES and PES payload (ES), adaption field private data, PES header private data

MPEG-2 systems demultiplexer

SAA7205H

7.2 MPEG-2 systems parsing

The demultiplexer receives data from a Forward Error Correction (FEC) decoder (see Fig.4) or a descrambler (see Fig.5) in a digital TV receiver in the following input data format:

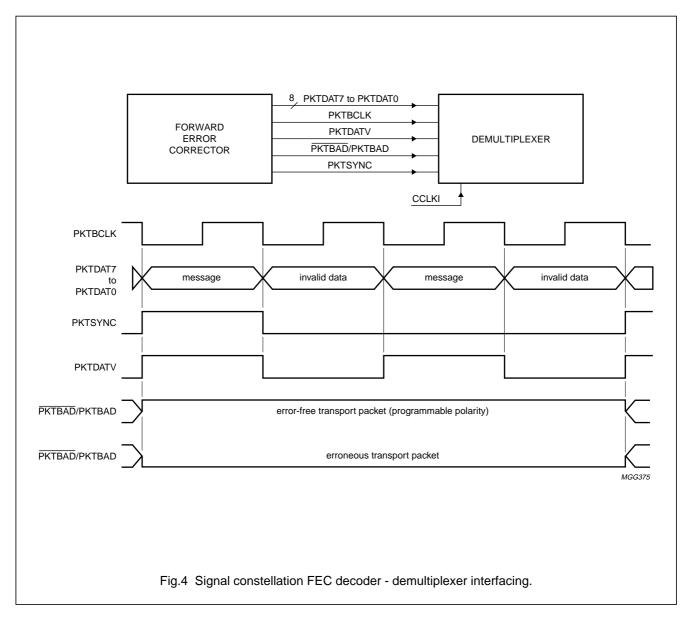
- A number of data bits via PKTDAT7 to PKTDAT0 (8-bit wide input bus)
- A valid input data indicator signal (PKTDATV) which is HIGH for consecutive valid bytes and output by either a FEC decoder or a descrambler. The demultiplexer input is allowed to have a 'bursty' nature.
- A transport packet error indicator (PKTBAD/PKTBAD)
 which is HIGH for the duration of each 188 byte
 transport packet in which the FEC decoder found more
 errors than it could correct. The polarity (active HIGH or
 LOW) of the error indicator is programmable
 (bit Bad_polarity, address 0x0100; see Table 13).
- A packet sync signal (PKTSYNC) which goes HIGH at the start of the first byte of a transport packet. Only the rising edge of PKTSYNC is used for synchronization, the exact HIGH time of the signal is therefore irrelevant.
- A byte strobe signal [PKTBCLK (< 9 MHz)] which indicates consecutive data bytes in the input stream, in the non-9 MHz mode only (bit 9 MHz_interface = 0, address 0x0100;see Table 13). PKTBCLK is used as an enable signal and transport stream input bytes are sampled on its rising edges of the clock pulse. If the input interface is programmed to the 9 MHz mode (9 MHz interface = 1), the PKTBCLK signal is ignored.
- A descrambler clock signal [DCLK (9 MHz, 30% duty cycle)] which is the data output clock for the descrambler. If rising edges of this clock signal are used to input data to the demultiplexer the 9 MHz mode must be used (bit 9 MHz_interface = 1, address 0x0100; see Table 13).

The parser module in the demultiplexer parses MPEG-2 systems compliant transport streams. MPEG-2 systems specifies a hierarchical two level multiplex (see Fig.6). The top hierarchical level is the transport stream, consisting of relatively short (188 byte) transport packets. Each transport packet consists of a 4 byte transport header, an optional adaptation field and a payload.

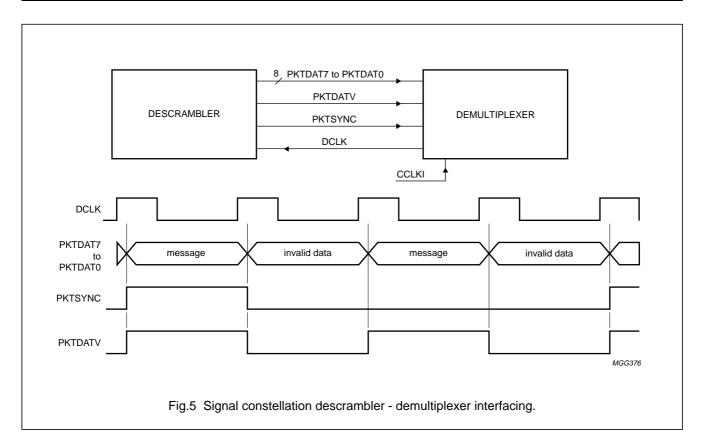
The transport header contains a 13-bit packet identification field. The adaptation field may contain Program Clock Reference (PCR) data and transport private data, among others. Both the transport header and the optional adaptation fields are parsed by the parser module within the demultiplexer. The individual states of the MPEG-2 parser in the demultiplexer are listed in Table 14.

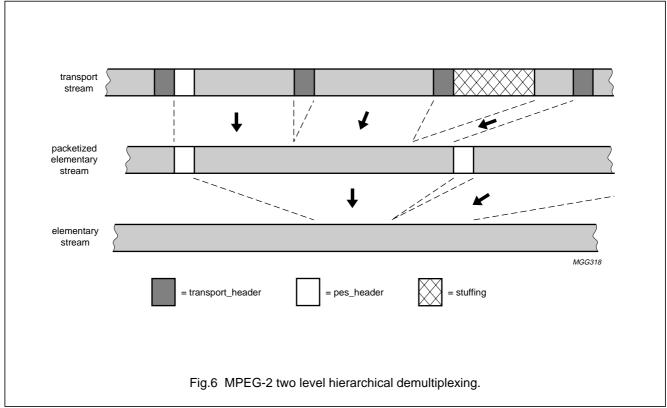
The hierarchical multiplex level below the MPEG-2 transport stream and the packetized elementary stream, is partly parsed by the demultiplexer, for instance in the audio and video filters. A packetized elementary stream consists of an elementary stream (e.g. MPEG-2 audio, or video data) which is divided into subsequent variable section lengths. To each section a PES header is added, thus creating PES packets. A PES header may contain time stamp information (PTS or DTS), scrambling control, copy information and PES private data.

In the demultiplexer, parsing is performed for all incoming transport packets. The parser is synchronized to a rising edge on the PKTSYNC input. A microcontroller can compose a set of PIDs by programming the appropriate registers in the various filters within the demultiplexer. If a packet is part of an audio or video transport stream, some of the information fields in the transport and PES packet headers are automatically retrieved. The microcontroller can read the obtained information. Table 2 lists data that can be accessed by the microcontroller, for both video (address 0x0509; see Table 13) and audio streams (address 0x0609; see Table 13).


MPEG-2 multiplex fields which are related to program specific information (PSI), service information (SI), private data and conditional access data (called sections) are parsed partly in the section data filters. Program association tables, program map tables and conditional access tables can be retrieved from the stream and stored in buffers in an external $32K \times 8$ SRAM. The same can be performed (optional) for transport_private_data, PES_private_data, and private sections in the subtitling and section data filters. A microcontroller may access data in the section data and subtitling buffers for further processing in software.

MPEG-2 systems demultiplexer


SAA7205H


 Table 2
 Microcontroller accessible MPEG-2 systems information

POSITION	NUMBER OF BITS	FIELD NAME	FUNCTION
Transport packet header	2	transport_scrambling_control (bits: ts_scr_ctrl1 and 0)	indicates whether the associated bit stream is scrambled or not
PES header	2	PES_scrambling_control (bits: pes_scr_ctrl1 and 0)	indicates whether the associated PES payload is scrambled or not
	1	copyright (bit: cp_info1)	anticopy management
	1	original_or_copy (bit: cp_info0)	anticopy management
	1	additional_copy_info_flag (bit: ad_cp_flag)	anticopy management
	7	additional_copy_info (bits: ad_cp_info7 to 0)	anticopy management

SAA7205H

MPEG-2 systems demultiplexer

SAA7205H

7.3 Error handling

The error handling module responds to four situations in which errors are present in the incoming stream:

- An erroneous packet is signalled to the demultiplexer, by means of the PKTBAD/PKTBAD input signal.
 The FEC decoder drives this signal LOW (or HIGH) should it discovers that the number of errors in a packet exceeds its correction capability. The polarity of the PKTBAD/PKTBAD input signal is programmable (bit Bad_pol, address 0x0100; see Table 13).
- The transport_error_indicator bit in the transport packet header is set (equals logic 1), indicating that an error occurred prior to, or during transmission
- · A continuity counter discontinuity is detected
- The parser detects a syntax error in a packet, or is out of sync.

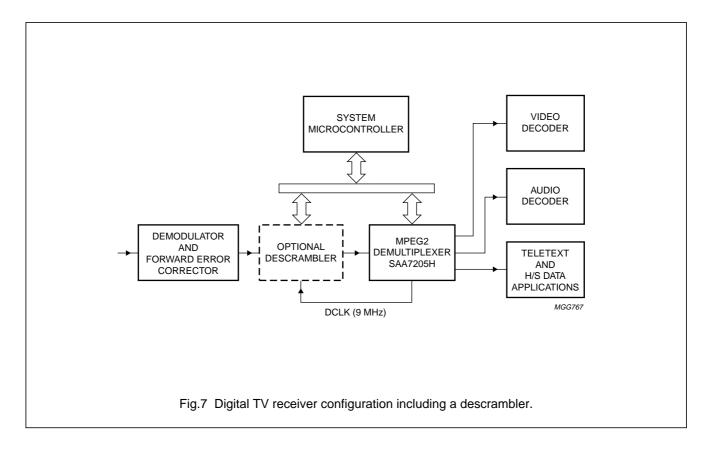
In the first two cases, the transport_error_indicator bit in the transport packet header is set. In all cases error handling depends on the data stream the packet belongs to, as indicated in Table 3. Most of the functions in this table are executed in the data filters, not in the error handling module. Error handling is therefore implemented as a distributed function.

If the parser detects a syntax error or is out of sync, the error handling module discards all incoming data, and an interrupt is set (bit prs_sync_lost, address 0x0000, see Table 13).

The error handling module keeps track of an average error count. The module counts every occurrence of both PKTBAD = 0 (or PKTBAD = 1) and

"transport_error_indicator = 1. The 16-bit error count value can be read by the microcontroller, which can also reset the counter every once in a while by writing all zeroes (00..00) to the register (word cnt15 to cnt0], address 0x0200; see Table 13). The microcontroller can thus determine an average packet error rate.

Table 3 Error handling algorithms


DATA STREAM	OPTION	ERROR HANDLING
Video	third party decoder	erroneous transport packets are discarded, no error flag is set, but a sequence_error_code (0x000001B4) is inserted, whenever a continuity_counter discontinuity is discovered
	SAA7201	handling is altogether done in the SAA7201 source decoder
Audio	_	discard erroneous packets
TXT	_	discard erroneous packets
Subtitling	-	PES packet data are passed to the microcontroller. The error handling decision is left to the microcontroller.
High speed data	-	programmable error handling (see Section "High speed data interfacing")
Section data	-	CRC calculation is performed in the filters. If an error is detected, an error flag (bit err_stat, address 0x0305 to 0x0314, see Table 13) is set. The error handling decision is left to the microcontroller.

MPEG-2 systems demultiplexer

SAA7205H

7.4 Interfacing to the external descrambler

An optional external descrambler can be incorporated in a digital TV receiver in the configuration indicated in Fig.7. In such a configuration the demultiplexer generates a 9 MHz, 33% duty cycle descrambler clock (DCLK) signal (see Fig.5). A descrambler could use this clock signal for data processing and outputting data. In such a configuration the demultiplexer input interface is set to 9 MHz mode (bit 9 MHz_interface = 1, address 0x0100, see Table 13).

MPEG-2 systems demultiplexer

SAA7205H

7.5 High speed data interfacing

The High Speed (HS) data filter module retrieves entire transport packets, packet payloads, PES payloads, or sections from the input stream, on the basis of a programmable filter. The packets may contain data for specific high speed data applications. In test mode however, by reprogramming the filter (word HS_pid12 to HS_pid0, address 0x0700; see Table 13), data of other filters can be output. This enables the user to monitor data streams directed to audio, video, section data, and other filters. The HS data filter features a programmable error handling mechanism. If the 'HS_err_rmv' (address 0x0701;see Table 13) bit is set, erroneous output packets are removed from the stream. If 'HS_dupl_rmv' (address 0x0701, see Table 13) is set, the same is true for duplicate packets. Both removal options can also be disabled.

In the single PID mode, the HS filter can be programmed to operate in one of four filter modes (bits HS_mode, address 0x0700, see Table 13), as indicated in Table 4.

In multiple PID mode, only entire transport packets can be output, for packets matching the PID specification. Selected stream data is output (unbuffered) via the GPO7 to GPO0 bus, at byte clock (DCLK) frequency (rate = 9 MByte/s). Data is output in the format indicated in Fig.8. The DCLK signal is a continuous byte clock. The HSV signal is set for matching data only, otherwise it is kept low. The HSSYNC signal indicates the position of the first byte of the selected data, as indicated in Table 4. Erroneous data is signalled by means of the HSE signal, which is high for the duration of the erroneous packet.

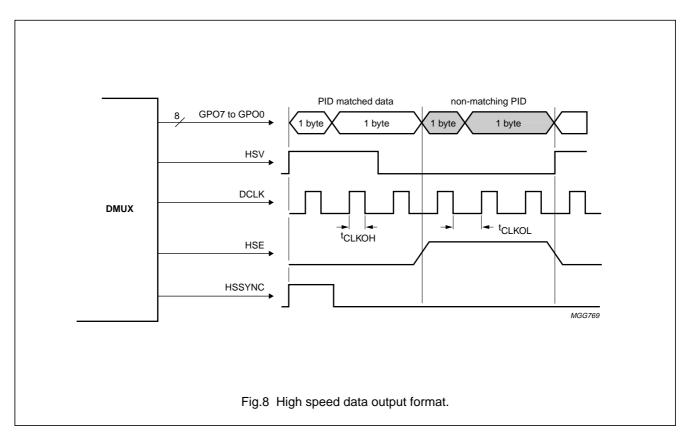

In section mode HS data is selected on the basis of table_id, and two section header bytes following the section_length indicator (see Fig.26). For this purpose, programmable filter masks are provided (address 0x0702 to 0x0704, see Table 13). If section mode is selected, the general purpose output GPO7 to GPO0 does not carry the full transport stream. Only selected sections are output

Table 4 HS programmable filtering modes

OPERATING MODE	PID MASK (ADDRESS 0X0701; see Table 13	FILTERING OPTION	FUNCTION	HSSYNC
Single PID mode			outputs entire transport packets. (HS_mode = 00, address 0x0700, see Table 13)	first byte of transport packet
	particular PID matches	TS packet payload	outputs transport packet payloads for a selected PID. (HS_mode = 01)	first byte of transport packet payload, only if payload_unit_ start_indicator is set
Single PID mode	'1111', indicating all PID bits are relevant,	PES packet payload	output PES packet payloads for a selected PID. (HS_mode = 10)	first byte of PES packet payload
(continued)	therefore only one particular PID matches	section	outputs entire sections, based on PID, and table_id + 2 bytes selection (addresses 0x0702 to 0x0704, see Table 13). (HS_mode = 11 and HS_sect_flt_en = 1)	first byte of section header
Multiple PID mode	'01', indicating one or more PID bits are don't care, so multiple PIDs may match	total TS packet	output packet payloads only. (HS_mode = 00)	first byte of transport packet

MPEG-2 systems demultiplexer

SAA7205H

7.6 Interfacing to Philips SAA7201 video decoder

The Generic Data Filter (GDF) is connected to the General Purpose interface, which shares its output bus GPO7 to GPO0 with the high speed data interface.

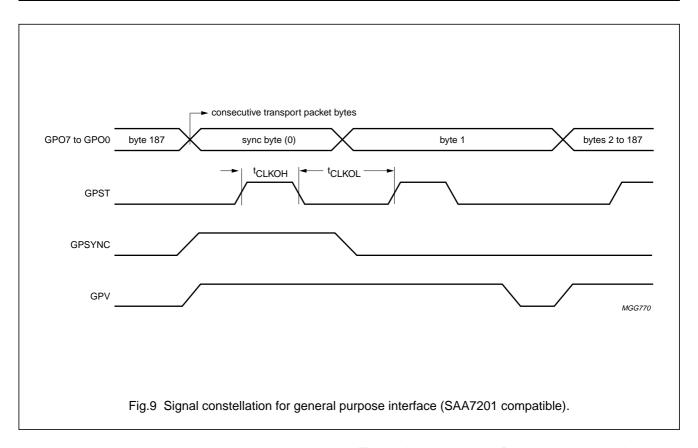
This output can be used to interface with the Philips SAA7201 video decoder. The GDF does not filter at all, it merely passes the entire transport stream to the output in byte format. The filter generates a GPST signal, which is a gated byte clock, defined by a fixed high time (t_{CLKOH}) and a minimum low time (t_{CLKOL}) (see Fig.9). In addition to the strobe signal, the filter generates a GPV signal which can be used in combination with the continuous DCLK to select valid bytes, should a continuous clock be needed. The filter furthermore generates a packet sync byte indicator (GPSYNC).

It should be noted that the HS filter is programmed to section mode (see Table 4), the general purpose output is not available.

The general purpose interface is bidirectional and can therefore serve as an alternative transport stream input to the demultiplexer. The mode of the general purpose interface is set by configuring the 'GP_direction' bit (input = 1, output = 0, address 0x0700, see Table 13). The GP pins have the following meaning when configured to operate as inputs:

GPO7 to GPO0 = PKTDAT7 to PKTDAT0

GPST = PKTBCLK


GPSYNC = PKTSYNC

GPV = PKTDATV

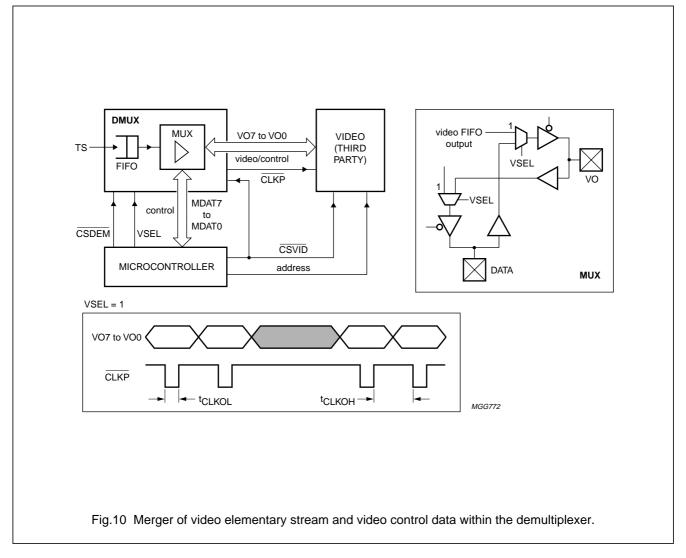
HSE = PKTBAD.

MPEG-2 systems demultiplexer

SAA7205H

7.7 Interfacing to a third party video decoder

Communication to a third party video decoder involves merging both video packetized elementary stream (PES) or elementary stream (ES) data and control data on the same 8-bit bidirectional bus VO7 to VO0 (see Fig.10). PES or ES (bit: 'video_pes_esn', address 0x050A, see Table 13) data is filtered by the video data filter and is passed to a 768 Byte video FIFO buffer (see Section "Output buffering for audio and video"), in which it is stored at byte clock frequency (9 MHz). The video PES or ES stream is read from the FIFO at video data acquisition clock frequency CLKP (equals 9 MHz = CCLKI/3, 67% duty cycle, see Fig.10). However, CLKP is a gated clock signal, which is frozen to logic 1 in case of control exchange between the microcontroller and the video decoder (⇒ VSEL = 0), or FIFO underflow (see Fig.10). A bidirectional bus multiplexer ('Merger') is therefore located at the output of the video FIFO. The timing associated with the video output interface is illustrated in Fig.11.

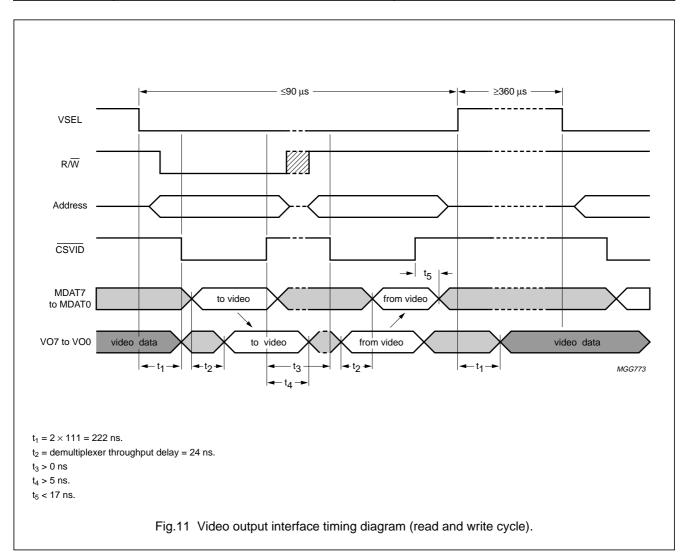

The third party video interface outputs clock and synchronization references. The set of references consists of a 13.5 MHz clock (CLK13.5, programmable phase, bit: 'clk_13p5_pol', address 0x050A, see Table 13), a CbREF signal, "CCIR 601" compliant H, V, composite syncs, and a field parity (EVEN/ODD) signal (both 50 Hz and 60 Hz, bit: 'ccir_50_60n', address 0x050A, see Table 13). The CbREF signal is locked to CCLKI and indicates U samples in the UY/VY video decoder output. To compensate for the delay in the decoding path, the phase of CbREF (active LOW) is programmable as illustrated in Fig.13 [bits: cb_ref_phase (1 to 0)], address 0x050A, see Table 13). The clock period immediately following a COMSYNC falling edge in normal lines (equals HSYNC falling edge) corresponds to counter position 0, the clock period preceding the falling edge corresponds to position 1727 (50 Hz), or 1715 (60 Hz),

MPEG-2 systems demultiplexer

SAA7205H

The set of references can be generated either in master (internal), or in slave (external) mode. Both options are compared in Fig.12. If bit 'v_in_pol' (address 0x050A, see Table 13) is programmed to logic 1, the sync generator synchronizes to a rising edge on VIN, or it locks to a falling edge. The sync circuitry automatically operates in slave mode, if an appropriate edge occurs on VIN. The position in the CCIR 601 field at a VIN triggering edge is determined by the programmable registers 'horiz_offset' and 'verti_offset' (addresses 0x050F and 0x0510, see Table 13). The phase relationships between the COMSYNC and the HSYNC and VSYNV are programmable (words: 'h sync fall', 'h sync rise', 'v sync fall', 'v sync rise', addresses 0x050B to 0x050E, see Table 13). For details on the sync signal constellation see Fig.13. It should be noted that the sync generator is not reset by 'Pwr_On_Rst'.

In the slave mode, the demultiplexer offers a possibility to lock the 27 MHz system clock to the incoming vertical sync pulses (VIN). The demultiplexer stores the position of the horizontal and vertical sync counters as soon as a triggering edge occurs on VIN ('vin_hpos', 'vin_vpos', addresses 0x0408 and 0x0409, see Table 13). The triggering edge furthermore resets the H and V counters. The microcontroller can retrieve the position data and calculate the difference between the detected position and the required position (horiz_offset, verti_offset). From this the microcontroller is able to derive VCO control values (see Section "Program clock reference processing"). The 27 MHz system clock can thus be locked to external display sync sources.



MPEG-2 systems demultiplexer

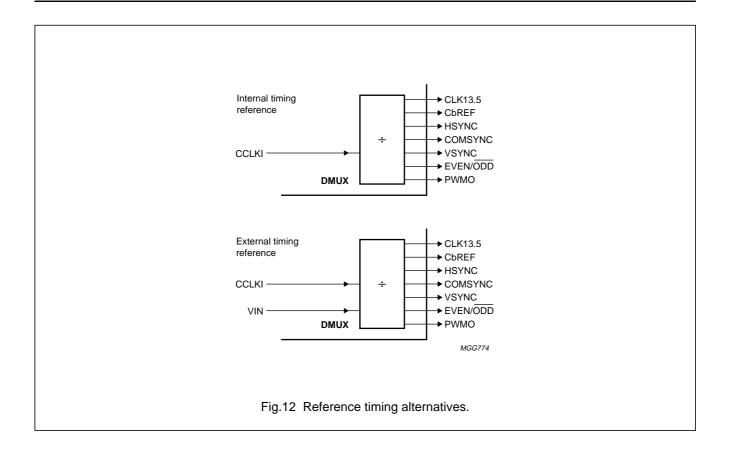
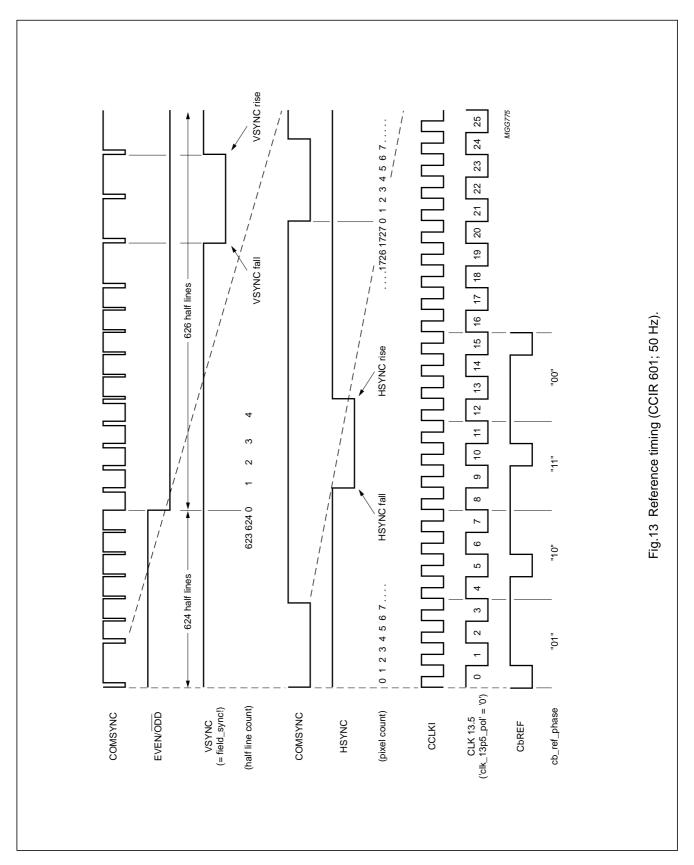

SAA7205H

Table 5 VSEL = 0; see Fig.10


R/W	CSVID = 0	CSVID = 1			
$R/\overline{W} = 0$	DMUX drives VO7 to VO0				
	DMUX does not drive MDAT7 to MDAT0				
$R/\overline{W} = 1$	DMUX does not drive VO7 to VO0				
	DMUX drives MDAT7 to MDAT0	DMUX does not drive MDAT7 to MDAT0			

SAA7205H

SAA7205H

MPEG-2 systems demultiplexer

SAA7205H

7.8 Interfacing to SAA2500 and third party audio decoders

The audio interface performs system support for Philips SAA2500 or third party audio decoders. The pin assignment for the interface and a description of the respective functions is given in Table 6. Audio PES or elementary stream data are filtered by the audio data filter and passed to a 6 kByte FIFO buffer in which they are stored at the byte clock frequency (9 MHz). Audio elementary stream data is read from the FIFO at the AUDATCLK frequency. The frequency of this clock is adapted to the audio bit rate index (32 to 448 kbit/s), which is derived from audio frame header information. However, to compensate for decoder delays, the output process is conditioned to synchronize to presentation time stamps (PTS).

The AUDECLK output is derived from the 27 MHz demultiplexer chip clock through division by a real number M, which is generated by programming I0 and I1 (words: 'audio_incr0', 'audio_incr1', addresses 0x060B and 0x060C, see Table 13). The AUDECLK can be used as an audio decoder chip clock and is generated by the circuitry illustrated in Fig.14. The decoder clock is generated with a maximum edge jitter of 37/2 = 18.5 ns. Therefore, if this clock is used for audio digital-to-analog conversion, for high quality audio it may have to be dejittered using an external PLL or an LC filter.

Since most audio decoders accept only elementary audio data, the demultiplexer takes care of the following basic tasks in the audio path:

- · Parsing of audio transport packets with the proper PID
- · Suppression of transport packet header data
- Detection of PES packet boundaries to find PES packet length and PTS time stamps
- Suppression of PES headers and stuffing bytes (bit 'audio_pes', address 0x060A, see Table 13), optional
- Detection of audio frame boundaries to find audio frame length and audio bit rate, optional
- Delay compensation and expansion of audio data to the correct time and bit rate (bit 'uc_sw_sync', address 0x060A, see Table 13), optional.

A block diagram of the audio interface circuitry is illustrated in Fig.15.

One basic function of the audio data filter is to optionally determine the audio frame length and find the frame boundaries. The audio frame length depends on the basic audio sampling frequency, the coded bit rate, the MPEG layer used and in case of 44.1 kHz sampling frequency,

the padding bit. The frame length ranges between 32 and 1728 bytes. All frame length related data are coded in the audio frame header directly after the sync word. Since the 12-bit sync word is not unique and could be emulated in the audio stream, a recursive detection algorithm consisting of the following steps is implemented:

- 1. Detect first occurrence of sync word
- 2. Evaluate header and determine frame length
- 3. If frame length is non valid go to step 1
- Check whether a sync word exists at frame length distance in the stream
- If no valid sync word is detected at this position go to step 1
- 6. If sync word is valid go to step 2.

All relevant header parameters are stored in dedicated registers. Their value is used for internal control but can also be accessed by the external microcontroller (words: 'audio_frame_length', 'audio_frame_info', addresses 0x0611 and 0x0612, see Table 13).

The delay of the audio data from input to output of the FIFO is basically determined by PTS time stamps. In order to avoid difficult PTS management these time stamps are stored in the FIFO between consecutive audio frames (see Fig.15). If a PTS exists for one specific audio frame the 23 least significant bits of the 33-bit time stamp are stored together with a PTS_valid flag in three byte positions preceding the associated audio frame. If no PTS is available, three bytes are also inserted preceding the audio frame, but in this case the PTS_valid flag indicates that the remaining 23 bits may not be interpreted as a valid PTS (see Fig.15).

The input process to the audio FIFO operates in stand alone, but can be restarted by the microcontroller (bit 'μc_frc_restart', address 0x060A, see Table 13). During restart, the write address counter is reset to 0 and kept at this position until the first audio frame with a valid PTS is available from the stream. The storage of PTS plus elementary audio data is then started. The storage process continues as long as the detected audio frame length remains the same. If a change in frame length occurs, or if a sync word is missing, the write counter is reset to 0 automatically and data storage is halted until a valid audio frame with associated PTS is retrieved from the stream. This kind of discontinuity handling is performed unconditionally and is signalled to the external microcontroller (interrupt: 'irpt_audio_restart', address 0x0000, see Table 13).

MPEG-2 systems demultiplexer

SAA7205H

The FIFO output process can operate in stand alone, but it can also be controlled by the microcontroller. During start-up the read address counter is reset to 0. After the FIFO input process is started the first PTS is retrieved from the first three byte positions in the FIFO. To this PTS value a programmable offset is applied [resulting in: PTS* = PTS - 'audio_pts_offset', addresses 0x060D to 0x060E (two's complement), see Table 13] to compensate for the delay of the audio decoder. The FIFO output process is subsequently put on hold as long as the System Time Clock (STC) counter has not reached the value of PTS*. When the STC counter exceeds the PTS* position the output process is started and audio data is retrieved from the FIFO at a speed indicated by the bit rate parameter in the frame header (32 to 448 kbit/s). Only valid audio data is passed to the output. Each time a valid PTS occurs at the FIFO output the difference between PTS* and STC is calculated and stored, to enable reading by the microcontroller (words: 'audio_stc_min_epts', addresses 0x060F to 0x0611, see Table 13). Two modes of operation can be selected by the microcontroller (bit 'μc_free_run', address 0x060A, see Table 13):

- PTS controlled: ('μc_free_run' = 0) the output process is put on hold if PTS* is greater than the STC counter position. Otherwise the output process continues at the given bit-rate. In this mode, the output process could be halted for every valid PTS which is being output by the FIFO
- Free running: (uc_free_run = 1) the output process is synchronized once during start-up only and continues at the derived bit rate without resynchronizing to new PTS time stamps. The difference between PTS* and the STC value is sampled and stored at the moment a PTS is taken from the FIFO (words: 'audio_stc_min_epts', addresses 0x060F to 0x0611, see Table 13). This event is signalled to the microcontroller (interrupt: 'irpt_audio_diff', address 0x0000, see Table 13). A decision for a restart (bit 'μc_frc_restart', address 0x060A, see Table 13) can consequently be taken in software, whenever the difference 'audio_stc_min_epts' exceeds a certain audible threshold (20 ms for instance).

After the input process is started a continuous check is performed on the distance between the FIFO read and write counters. If one pointer approaches the other one a wrap around may take place (buffer underflow or overflow), causing synchronization to be lost completely. Should this occur an internal start-up (restart) is initiated automatically and signalled to the microcontroller (interrupt: 'irpt_audio_restart', address 0x0000, see Table 13).

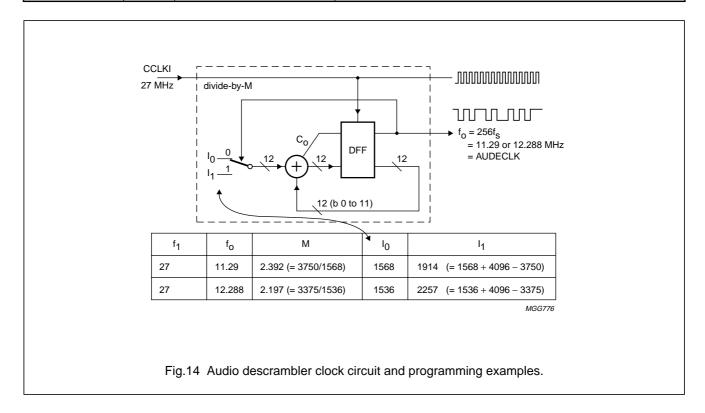
If a third party audio decoder is capable of adjusting the output delay by itself, the demultiplexer audio output process does not have to be PTS controlled. In this case the functionality of the demultiplexer audio interface can optionally be reduced to (bit ' $\mu c_s w_s c' = 1$, address 0x060A, see Table 13):

- Parsing of audio transport packets with the proper PID
- Suppression of transport packet header data
- Detection of PES packet borders to find PES packet length and PTS time stamps
- Suppression of PES headers and stuffing bytes (bit 'audio_pes', address 0x060A, see Table 13), optional
- Time expansion of the audio transport packet payload.

In this so called software sync mode (' $\mu c_s w_s ync' = 1$) the FIFO input runs freely. Either entire PES packets (bit 'audio_pes' = 1, address 0x060A, see Table 13), or the payload of selected PES packets is stored in the FIFO at subsequent addresses starting from 0 at start-up. PTS information is stored in the FIFO but is also available in registers to make it accessible for the microcontroller (words: 'audio_pts', addresses 0x0601 to 0x0602, see Table 13).

In the software sync mode, the FIFO output process is controlled by the microcontroller. The read address counter is reset to 0 during start-up and stays at this position until the write address exceeds the read address. This is the case immediately after the input process starts. The output process subsequently starts reading data at a fixed data rate of 9 Mbit/s (AUDATCLK = 9 MHz, 67% duty cycle (see Table 6 and Fig.10). The output process continues outputting data as long as the read address does not exceed the write address. If the read address equals the write address the output stops (AUDATV is set to logic 0) until new data is received at the input and the write address counter increments again. Consequently, if audio transport packets are equally distributed along the transport stream, the FIFO remains almost empty. The FIFO cannot overflow if the output rate equals at least the average input rate. Given a capacity of 6 kByte for the FIFO this means that at least 30 audio transport packets can be stored before an overflow occurs.

Audio data can be downloaded by the microcontroller to enable generation of 'beeps'. For this purpose, the demultiplexer has to be set to download mode (bit ' μc downl' = 1, address 0x060A, see Table 13).


MPEG-2 systems demultiplexer

SAA7205H

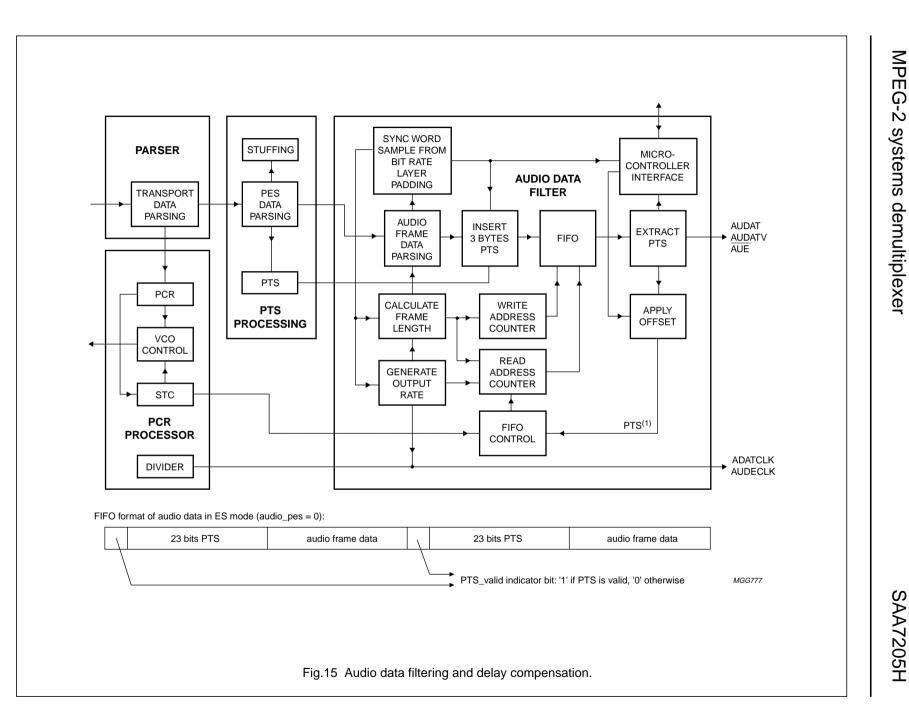
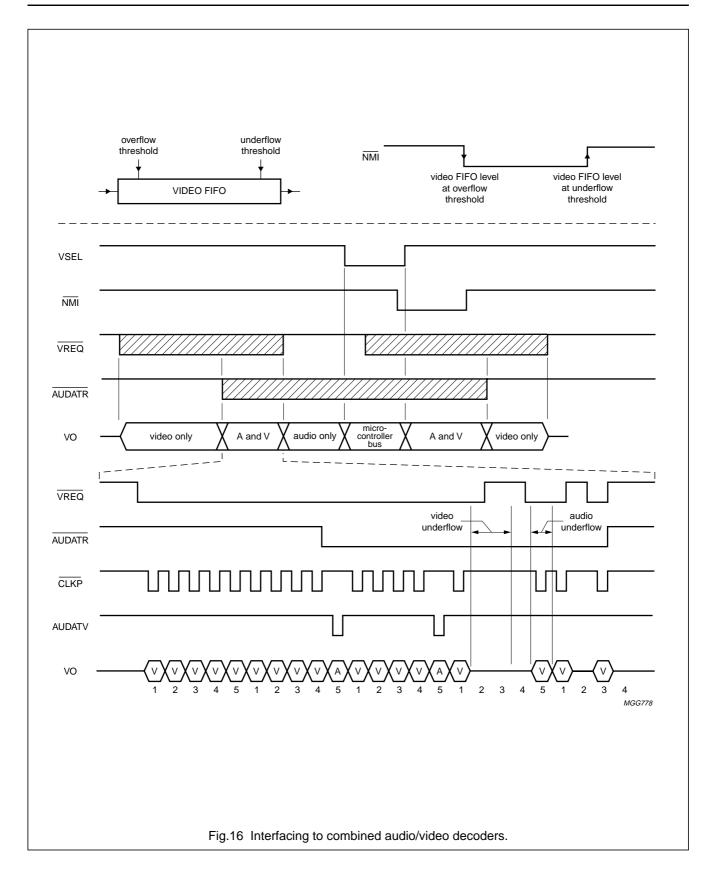

The microcontroller must first force the audio interface to restart ($\mu c_{rc_{restart}} = 1$). Subsequently it may download compressed audio data by writing consecutive bytes to the audio buffer (address 0x1xxx, see Table 13). A 'beep' must always consist of valid packetized elementary stream (PES) data. If the 'beep' is to be output to the audio decoder in PES format, 'audio_pes' must be set to logic 1. If the audio interface is programmed to software sync mode, the PES headers do not have to contain PTS data words. However, if the 'beep' has to occur at a specific point in time, the hardware sync mode ($\mu c_{sw_sync} = 0$ and $\mu c_{free_run} = 1$) is most suitable and at least the first PES header has to contain a valid PTS.

Table 6 SAA2500 and third party audio output interface

PIN	I/O	MODE	FUNCTION	
AUDAT	0	normal, SAA2500 and gated clock	audio elementary stream data, clocked out 111 ns after an AUDATCLK rising edge in 32 to 448 kHz mode, and 74 ns after an AUDATCLK rising edge in 9 MHz mode	
ADATCLK O		both normal and SAA2500	continuous audio data acquisition clock, 32 to 448 kHz, or 9 MHz	
		gated clock	gated audio data acquisition mode, 32 to 448 kHz. AUDATCLK = 0 in case of invalid data (gated_clock = 1, address 0x060A, see Table 13)	
AUDECLK	0	normal, SAA2500 and gated clock	continuous audio decoder chip clock (N × 27 MHz/M)	
AUDATV	0	normal mode, gated clock	valid audio data indicator (microcontroller SAA2500 = 0)	
		SAA2500 mode	audio sync word indicator (microcontroller SAA2500 = 1)	
AUE	0	normal mode, gated clock	audio data error flag (active LOW)	
		SAA2500 mode	sampling frequency indicator; logic 1 for 44.1 kHz, logic 0 for the other frequencies	

Preliminary specification

MPEG-2 systems demultiplexer


SAA7205H

7.9 Interfacing to combined audio/video decoders

If the audio and video interfaces are programmed to the A/V combined mode (av combi = 1, address 0x060A, see Table 13) they assume operation as illustrated in Fig.16. The microcontroller controls the VO bus in much the same way as described in Section "Interfacing to a third party video decoder". If VSEL = 0, the demultiplexer sets up a transparent path between the microcontroller and the combined A/V decoder (see Section "Interfacing to a third party video decoder"). However, If the data level in the video FIFO reaches a programmable overflow threshold ('v_ovfl', address 0x0512, see Table 13), a non-maskable interrupt (NMI) is pulled LOW. This indicates that the microcontroller must release the VO bus. otherwise video data is lost. As soon as the data level in the video FIFO reaches the programmable underflow threshold ('v_undfl', address 0x0512, see Table 13), NMI is driven HIGH again.

Audio and video data are output at the request of the combined A/V decoder, as illustrated in Fig.16 (VREQ, AUDATR). If an A/V decoder does not have such a request, these demultiplexer inputs may be grounded. In the A/V combined mode, both CLKP and AUDATV can be used as data valid signals (see Fig.16). Timing figures for these valid signals are as indicated for CLKP in Fig.10. Audio and video data are output in a sequence of, for instance, four video bytes followed by one audio byte. The length of this sequence is programmable and is repeated incessantly. However, if the audio FIFO is empty, or AUDATR is HIGH, a video byte is output, even in audio time slots (see Fig.16), if VREQ is LOW. Audio data however, are never output in video time slots.

SAA7205H

MPEG-2 systems demultiplexer

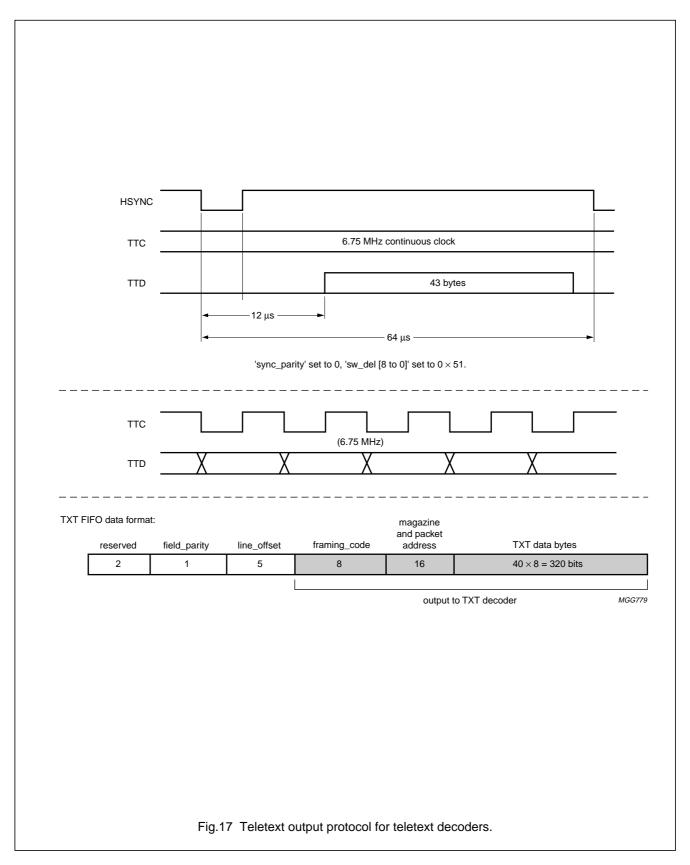
SAA7205H

7.10 Interfacing to SAA9042 and SAA5270 teletext decoders and SAA7183 EURO-DENC

The Demultiplexer contains a ITU-R System B compatible Teletext (TXT) filter. This filter extracts relevant data from the incoming data stream in accordance with the syntax specified by the European Telecommunications Standards Institute (ETSI). The TXT filter interprets the data, provides temporary storage (2 kBytes) and outputs the data in a TTC/TTD protocol (compatible with SAA9042 and SAA5270), or in a TTR/TTX protocol (compatible with SAA7183). The TTC/TTD output protocol is shown in Fig.17 and the connection of SAA9042 to the demultiplexer is shown in Fig.18. The SAA9042 and SAA5270 teletext decoders are assumed to operate in 'Normal Synchronous Mode', applying 4 channel acquisition. Some of the options associated with MPEG2 PES packets, such as PTS handling and CRC checking are not implemented in the demultiplexer TXT filter. The TXT filter does support interfacing with the microcontroller, for use with future extensions such as Close Caption (CC) and OSD. The TXT filter can therefore be used to retrieve full PES packets. Various modes of operation can be configured (address 0x0800, see Table 13).

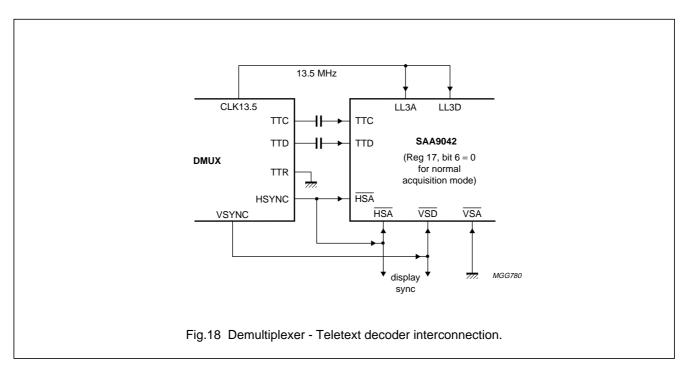
The PID of the TXT filter is programmable 'txt_pid' (address 0x0801, see Table 13). The delay between an active horizontal sync edge and the start of TTD/TTX output is controlled by sync_to_window_delay 'sw_del [6 to 0]' (address 0x0802, see Table 13). The active horizontal sync edge is defined by 'sync_parity' (address 0x0800, see Table 13), logic 0 meaning falling edge. All of the control registers are write only. The TXT filter however also has some readable registers which contain the current values of PES scrambling control, PES flags (address 0x0805, see Table 13), data_identifier, data_unit_identifier (address 0x0806, see Table 13,) and data_unit_flags (address 0x0807, see Table 13,).

The status register of the TXT filter (address 0x0808, see Table 13) contains the current error code and the number of 16-bit words in the TXT FIFO.


The TXT interface is capable of supporting TXT insertion into the vertical blanking interval of a CVBS signal. For this purpose, it provides an SAA7183 (EURO-DENC) compatible TXT output. If EURO-DENC requests data via TTR, the demultiplexer provides it at 6.9375 Mbit/s. This frequency is generated by dividing 27 MHz by 3 or 4 in a specific sequence. The rhythm required by the EURO-DENC is exactly matched. The interpretation of the field_parity bit, in the TXT data stream, is programmable ('parity_sign', address 0x0800, see Table 13). Allocation of TXT data to odd or even fields can therefore be configured as desired. Field allocation can be switched on or off with 'check_field' (address 0x0800, see Table 13).

The TXT filter can be separately enabled by setting the input and output modes to 'idle' (see Table 7) in the txt_mode register (address 0x0800, see Table 13) and reset ('txt_reset', address 0x0804, see Table 13). When the TXT filter is used in one of the microcontroller interaction modes close_caption or μc _download, the FIFO may generate a warning that the TXT_FIFO is almost full. The threshold for this warning can be set to any value between 0 and 1023, being the number of 16-bit words in the TXT_FIFO ('fifo_tresh [9 to 0]', address 0x0803, see Table 13). An interrupt is also generated at the moment an overflow occurs. At this point the TXT_FIFO is automatically reset to empty. If the microcontroller is writing to the TXT_FIFO, overflow must be prevented and the reset must be performed by the microcontroller.

Table 7 TXT filter modes and error codes


CODE	TXT INPUT MODE	TXT OUTPUT MODE	TXT_FIFO ERROR CODE
00	idle	idle	no error
01	teletext	TTC/TTD	threshold passed
10	close_caption	TTXrq/TTX	overflow
11	μc_download	idle	not used

SAA7205H

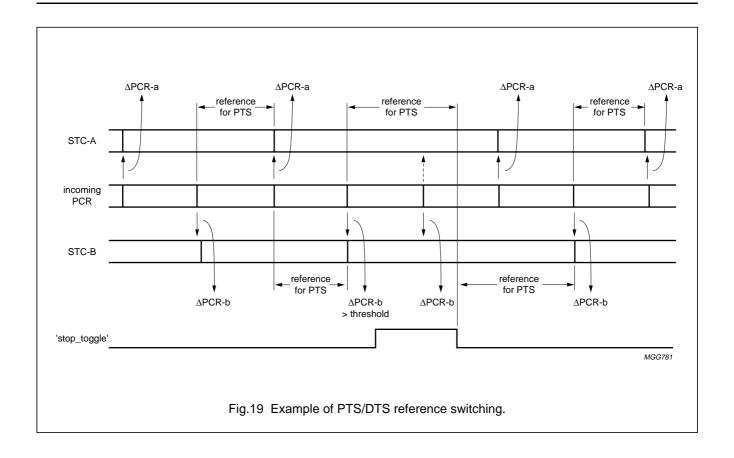
MPEG-2 systems demultiplexer

SAA7205H

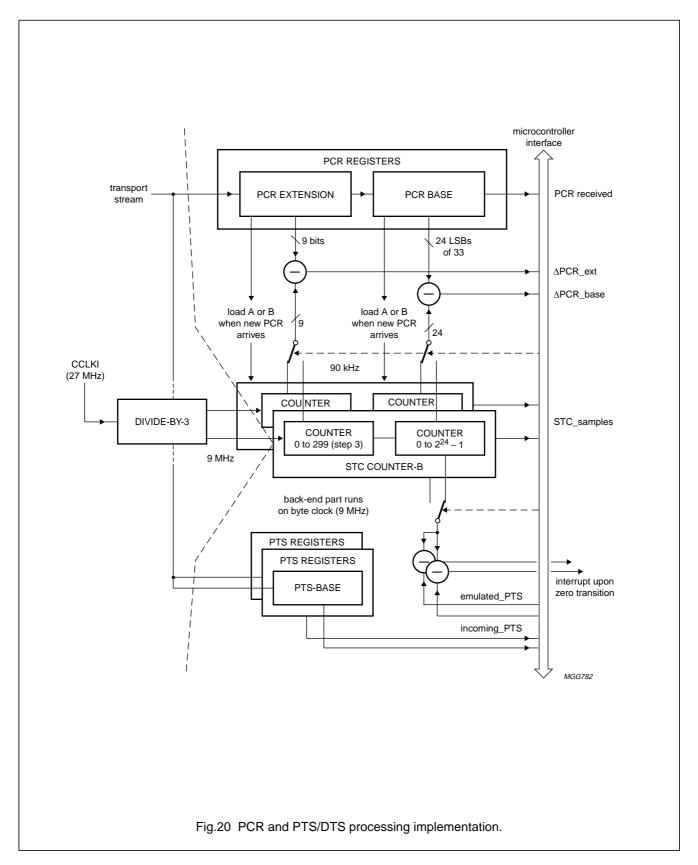
7.11 Program clock reference processing

To provide a reference for all timing related actions, two System Time Counters (STC) are implemented in the demultiplexer. Each system time counter is split up into two counters as illustrated in Fig.20. This split has the advantage that the STC output has the same format as the incoming PCRs, thus enabling direct comparison. The STC counters (both of them 9 + 24 bits) are compared with PCRs alternately. In a selected stream (word: 'pcr_pid', address 0x0401, see Table 13), PCR values are transmitted at least once every 100 ms in the adaptation field of a transport header. Each STC counter is therefore updated once every 200 ms. Whenever a new PCR value is retrieved ('irpt discnt a', or 'irpt discnt b', address 0x0000, see Table 13), both its value and the value of the difference $\triangle PCR = PCR - STC$ can be read by the microcontroller (words: 'pcr_base_msw', 'pcr_base_lsw', 'pcr_ext', 'pcr_base_diff_msw', 'pcr_base_diff_lsw', 'pcr_ext_diff', addresses 0x0402 to 0x0407, see Table 13). The STC counters are preset in turn to the PCR timing reference, as illustrated in Fig.19. If an STC counter is preset, the other is used as a timing reference for PTS/DTS comparison. It should be noted that preset operations may cause discontinuities and may render PTS/DTS time stamps obsolete.

Two STC counters are implemented to cope with decoding problems resulting from discontinuities. Discontinuity handling is left to the microcontroller. After a discontinuity, if Δ PCR (equals PCR - STC) exceeds a certain (software)

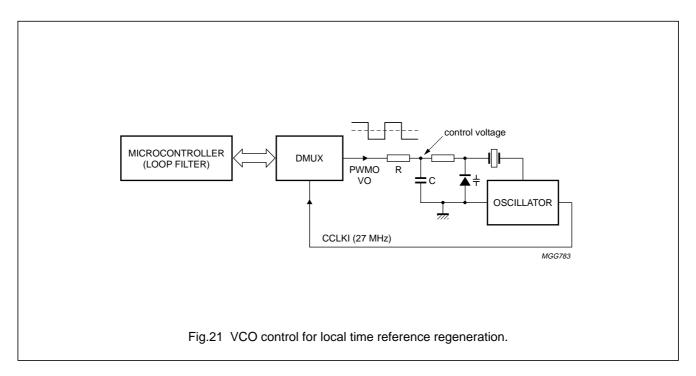

threshold, the microcontroller can postpone the switching from the continuous STC counter to the one that was preset, as indicated by the vertical dotted line in Fig.19. For this purpose the microcontroller drives the signal 'stop_toggle' to logic 1 (address 0x0400, see Table 13) as soon as it detects $\Delta PCR >$ threshold. If 'stop_toggle' is reset, toggling between the STC counters continues, starting with taking as a reference the STC that is most up to date.

The measured phase offset ($\triangle PCR$ ext, $\triangle PCR$ base) is filtered by the microcontroller to derive control data for an externally implemented crystal oscillator. To avoid having to implement DACs in the demultiplexer, a duty cycle controlled Pulse Width Modulated (PWM) output is implemented. The PWM circuit connected to this output delivers a pulse width modulated signal, the ratio of HIGH and LOW time which is adjustable by the microcontroller (byte: 'pwm_ctrl [7 to 0]', address 0x0511, see Table 13). A 'pwm_ctrl' value of 127 corresponds to a 'Pwm_Out' signal with a 50% duty cycle, higher values represent a higher duty cycle. The pulse width modulated signal can be filtered externally by an RC filter to create a control signal for a crystal oscillator. The PLL loop bandwidth for the clock regeneration circuit is determined in software. An application diagram is shown in Fig.21.


The 27 MHz system clock can be locked to an external display sync source (see Section "Interfacing to a third party video decoder").

MPEG-2 systems demultiplexer

SAA7205H



SAA7205H

MPEG-2 systems demultiplexer

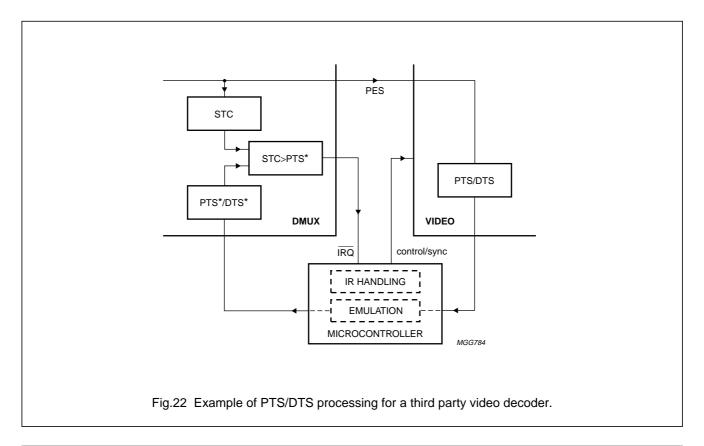
SAA7205H

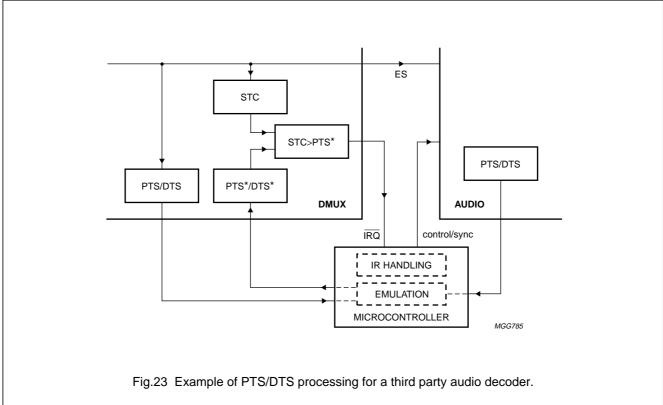
7.12 Time stamp processing (PTS/DTS)

Time stamp processing generates decoding (DTS) or presentation (PTS) start interrupts for source decoders (bits: 'irpt_audio_strt', irpt_video_strt', address 0x0000, see Table 13). Each time the stamp processor therefore compares emulated PTS/DTS values (word: 'video_emu_pts', addresses 0x0505 and 0x0506, or 'audio_emu_pts', addresses 0x0605 and 0x0606, see Table 13) to the local system time clock (STC, see Fig.20). An interrupt (IRQ) to the microcontroller is generated in the event of a positive zero transition of the differences (STC - 'video_emu_pts' and STC - 'audio_emu_pts').

Interrupt-handling routines in the microcontroller translate the demultiplexer interrupt to control and synchronization data for the attached source decoder, as illustrated in Fig.23 for the video time stamp processor. Figure 23 assumes that PTS/DTS are retrieved inside the video decoder, but this is not necessary. The demultiplexer also retrieves PTS/DTS words from the stream (words: 'video_pts', 'video_dts', addresses 0x0501 to 0x0504, see Table 13). In contrast to what is illustrated in Fig.23, video PTS/DTS processing could therefore be identical to audio PTS/DTS processing (see Fig.24).

While the third party video decoder could retrieve PTS/DTS data from the incoming PES stream, the audio decoder generally does not. PTS/DTS retrieval is therefore performed in each of the time stamp processors


(audio and video) within the demultiplexer. It is for the microcontroller to decide whether it uses the retrieved time stamps. For audio time stamp processing the microcontroller may want to use the values retrieved by the demultiplexer (words: 'audio_pts', audio_dts', addresses 0x0601 to 0x0604, see Table 13) when operating in the software controlled synchronization mode. In this mode (bit 'µc_sw_sync' = 1, address 0x060A, see Table 13) the microcontroller loads emulated PTS values into the demultiplexer (words: 'audio_emupts', addresses 0x0605 to 0x0606, see Table 13) to get it to generate start interrupts (interrupt: 'irpt_audio_strt', address 0x0000, see Table 13), as illustrated in Fig.23. However, audio synchronization can also be performed automatically by the demultiplexer (bit 'uc sw sync' = 0, address 0x060A, see Table 13) (see Section "Interfacing to SAA2500 and third party audio decoders").


The microcontroller has to perform time stamp emulation on the basis of incoming PTS/DTS values (words: 'audio_pts', 'audio_dts', addresses 0x0601 to 0x0604, see Table 13). Emulation involves compensation for source decoder internal delays and repetitive generation of time stamps. The latter could be necessary because time stamps could be needed for every access unit in an elementary stream, but are broadcast far less frequently.

It should be noted that video PTS/DTS processing can operate along the same lines as illustrated in Fig.23 for audio decoders.

MPEG-2 systems demultiplexer

SAA7205H

MPEG-2 systems demultiplexer

SAA7205H

7.13 Output buffering for audio and video

Output buffering for both audio and video is based on FIFOs and buffer control circuitry. For audio, a 6 kByte buffer is needed in which data is written at byte clock frequency (9 MHz). Data is output bit serially via pin AUDAT, at AUDATCLK frequency, which is adjusted to the bit rate of the audio data (32 to 448 kbit/s, or 9 Mbit/s (software sync mode)). Alternatively, in audio/video combined mode, audio data is output byte parallel at rates determined by 'av_ratio' (see Section "Interfacing to SAA9042 and SAA5270 teletext decoders and SAA7183 EURO-DENC"). Valid audio elementary stream data is indicated by AUDATV = 1. In case of buffer underflow, AUDATV is kept LOW, unless the combined audio/video mode is configured (see Fig.16). The audio FIFO is used to overcome clock interfacing problems and to provide sufficient delay to synchronize audio and video. The buffer output process is controllable by the microcontroller (see Section "Interfacing to SAA2500 and third party audio decoders").

The microcontroller can access the audio FIFO for downloading 'beeps'. For this purpose the microcontroller has to program the audio interface to ' $\mu c_downl' = 1$ (address 0x060A, see Table 13). Furthermore it has to write valid audio PES packets (to addresses 0x1xxx), including at least one valid PTS for the first frame, if the audio interface is not programmed to PES mode or software sync mode.

For video, a 768 Byte buffer is implemented which is filled at byte clock frequency (9 MHz). The buffer is emptied on the video decoder acquisition clock $\overline{\text{CLKP}}$ (9 MHz = CCLKI/3, or lower rates in audio/video combined mode). $\overline{\text{CLKP}}$ is gated to create a valid indicator. $\overline{\text{CLKP}}$ is therefore frozen to logic 1 whenever the microcontroller wants to communicate with the video decoder (VSEL = 0) and in the event of buffer underflow.

A 2 kByte FIFO is incorporated for TXT data. The TXT FIFO is filled at 9 MHz and is emptied at a rate of either 6.75 Mbit/s or 6.9375 Mbit/s (TXT insertion). The microcontroller can access the FIFO to download TXT pages. For this purpose the microcontroller has to program the TXT interface to 'txt_downl' = 1 (address 0x0801, see Table 13). Furthermore it has to write valid TXT pages (to addresses 0x2000 to 0x23FF) in accordance with the FIFO format specified in Fig.17.

7.14 Microcontroller interfacing

The microcontroller interface provides the means of communication between a system controller (e.g. Philips P90CE201) in a digital TV receiver and the demultiplexer internal registers and buffers. The physical interface consists of:

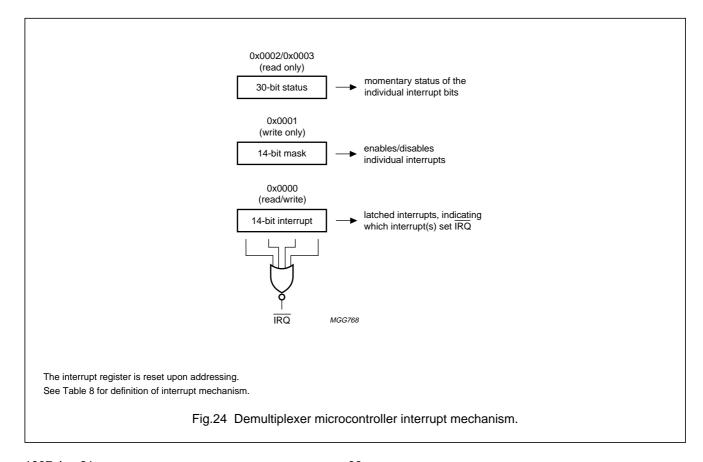
- MDAT7 to MDAT0: an 8-bit wide bidirectional data bus.
 Data and addresses information can be multiplexed on this bus (optional).
- CSDEM: an active LOW chip select signal.
 The demultiplexer only responds to microcontroller communication if this signal is driven LOW.
- CSVID: an active LOW chip select signal for the video decoder. The demultiplexer responds to a logic 1 on this pin by putting MDAT7 to MDAT0 in high impedance state should VSEL = 0. Consequently the microcontroller is allowed to communicate with other devices (i.e. RAMs and ROMs) when the demultiplexer has a transparent control path set up between the microcontroller and video decoder.
- R/W: an active HIGH read signal indicating that the microcontroller is attempting to read data from registers or buffers inside the demultiplexer or the video decoder. If this signal is LOW, data is being written to registers inside the demultiplexer or video decoder.
- MA10 to MA0: an 11-bit address bus. If bit MA10 = 1, it indicates that direct addressing is applied and address bits MA9 to MA2 are considered to be valid address inputs. If MA10 = 0 normal indirect addressing is applied and address bits MA9 to MA2 are ignored. The address in this case is derived from the multiplexed data address bus MDAT7 to MDAT0.

Direct addressing is applicable to a very restricted number of demultiplexer registers only:

- MA9 to MA7: specify register unit numbers, so only units in the range 0 to 7 are directly accessible
- MA6 to MA2: specify individual register addresses, so only the first 32 registers (0 to 31) of a register unit can be directly addressed. If address bit MA1 equals logic 1, MDAT7 to MDAT0 carries address information, otherwise it carries data (indirect addressing mode). If the least significant address bit (MA0) is logic 0, the most significant byte of a 16-bit register is addressed, otherwise the least significant byte is selected.

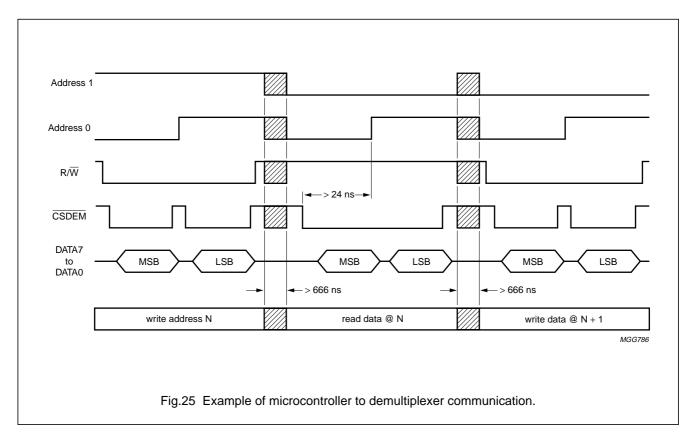
MPEG-2 systems demultiplexer

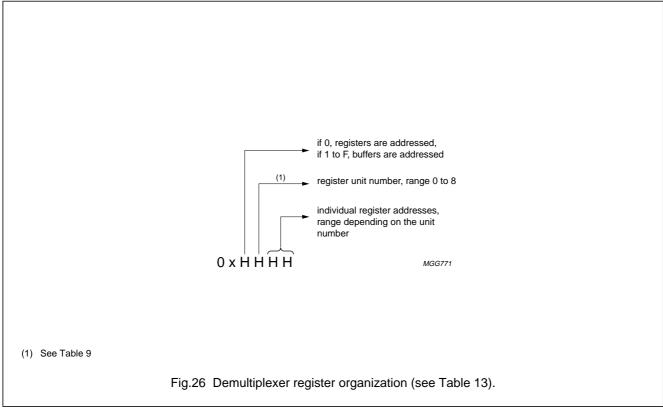
SAA7205H


 IRQ: an active LOW interrupt request signal. An interrupt is set should if one of the 14 bits in the demultiplexer internal interrupt register is set. The interrupt mechanism consists of 3×14 -bit and 1×16 -bit register in total, as indicated in Fig.24. The interrupt status registers enable the microcontroller to monitor the momentary status of the interrupts. This is particularly useful during read actions in the demultiplexer's section buffers, since the status bit in question (interrupt: 'flt [F to 0]_stat', address 0x0003, see Table 13) is reset as soon as the buffer is empty. The interrupt mask register (address 0x0001, see Table 13) allows individual interrupts to be prevented from resetting IRQ (to 0). Prior to latching the interrupts status bits into the interrupt register, they are logically ANDed with the mask. The interrupt register is reset (to 000000000000000) as soon as it is addressed (0x0000) by the microcontroller.

A typical example of communication between microcontroller and demultiplexer is illustrated in Fig.25. The demultiplexer contains an auto-increment address counter which can be loaded by performing a write address operation. The subsequent operation, whether read or write, is then performed at that address.

The operation after that is then automatically performed at address + 1, unless a new address is loaded.


Note: avoid resetting the auto-increment address counter to 0x0000, when not handling interrupts, as addressing it causes the interrupt register to be reset. Interrupt information might consequently be lost.


The demultiplexer internal register and buffer addresses are organized as indicated in Fig.26. The first 4 address (15 to 12) bits are used to select either control registers (0) or the data buffers (range 1 to 3, 8 to F). In the data buffer mode, the remaining address bits (11 to 0) are part of the word address (range depending on the data buffer). In the register mode, bits 11 to 8 specify the register unit number. The remaining 8 bits of the address (7 to 0) specify register addresses within a selected unit. The address range in a specific register unit depends on the number of registers present and is different for each unit. For details refer to see Table 13.

MPEG-2 systems demultiplexer

SAA7205H

MPEG-2 systems demultiplexer

SAA7205H

Table 8 Definition of interrupt mechanism

BIT NUMBER	MEANING OF INTERRUPT					
0	a new PCR arrived, STC_B preset					
1	a new video PTS arrived					
2	a new video DTS arrived					
3	video emulated PTS matched STC					
4	a new PCR arrived, STC_A preset					
5	a new audio PTS arrived					
6	audio emulated PTS matched STC					
7	audio output processing was restarted					
8	the difference: STC - emulated PTS was recalculated at the audio FIFO output					
9	the parser lost synchronization					
10	subtitling FIFO level at threshold					
11	TXT FIFO level at threshold					
12	one of the 12 short detection units detected data					
13	one of the 4 long detection units detected data					

Table 9 Unit contents

REGISTER UNIT NUMBER	UNIT CONTENTS
0	interrupt request handling control
1	parser input control
2	error handling, error count
3	data filtering control
4	PCR and timing regeneration control
5	video filtering and interfacing control
6	audio filtering and interfacing control
7	GP and HS Data filtering control
8	TXT filtering control

The microcontroller interface module contains a short filter module, a long module and a subtitling module. These filter modules allow the microcontroller to retrieve several sorts of data from the incoming transport stream.

7.14.1 SHORT FILTER MODULE

The short filter module is capable of accessing, for instance, program specific or service information, transported in sections, with a length of up to and including

1 kBytes. The configuration of the short filter module is shown in Fig. 28.

The filter consists of 12 section detectors. Each section detector selects and retrieves section data on the basis of:

PID

Table_id

4 maskable bytes (32 bits) in the section payload (see Fig 28).

The section data detected by a certain section detector is always stored in the associated 1 kByte section buffer. As soon as an entire section of data is stored, an interrupt (interrupt: 'flt0_B_irpt', address 0x0000, see Table 13) is generated. The 12 section detectors can be separately enabled (disabled), to avoid unnecessary interrupts.

The 'filter fired' registers enable the microcontroller to track which section detector loaded its buffer (bits: 'fit [B to 0]_frd', address 0x0304, see Table 13). Each of the section detectors checks incoming section data for errors, by means of the CRC_32 mechanism specified in MPEG2 systems. If an error is detected, an error status flag is set (bit: 'err_stat', see Table 13). The error flag can therefore be accessed by the microcontroller.

If the microcontroller decides to read data from one of the buffers (see Table 13, address range as indicated in Table 10) it can determine when to stop reading in two ways. It can periodically poll the 'flt [B to 0]_stat' bits in the interrupt status register (address 0x0003, see Table 13). These bits go LOW as soon as the last valid section data word is read from the buffer in question.

Another possibility is for the microcontroller to read the 'high_address' word ('hadr [B to 0]', see Table 13). This word is proportional to the number of valid section words (1 word equals 2 bytes) that was written into the buffer. Actually #words equal 'high_address' + 1. This number equals the number of read cycles that has to be performed to retrieve all valid data from the section buffer.

If the buffer contents have to be removed without being read, the microcontroller can write a logic 1 to one of the 'rst_bf [B to 0]' bits (address 0x0315, see Table 13), thus releasing the buffer. Another possibility is to perform one write address operation to (0x.... - hadr [B to 0] + 1). The internal auto increment address counter is thus set to the last byte in the buffer. The filters are reactivated after having been idle during buffer emptying.

MPEG-2 systems demultiplexer

SAA7205H

Table 10 Description of filter modules

FILTER MODULE	SECTION DETECTORS (DEPTH)	BUFFERS (SIZE)	RESPECTIVE ADDRESS RANGES
Short	12 (4 Bytes), detectors 0 to B	12 (1 kBytes)	0x8000 to 0x81FF; 0x8200 to 0x83FF;
			0x8400 to 0x85FF; 0x8600 to 0x87FF;
			0x8800 to 0x89FF; 0x8A00 to 0x8BFF;
			0x8C00 to 0x8DFF; 0x8E00 to 0x8FFF;
			0x9000 to 0x91FF; 0x9200 to 0x93FF;
			0x9400 to 0x95FF; 0x9600 to 0x97FF
Long	4 (7 Bytes), detectors C to F	4 (4 kBytes)	0x9800 to 0x9FFF; 0xA000 to 0xA7FF;
			0xA800 to 0xAFFF; 0xB000 to 0xB7FF
Subtitling	1 (PES)	1 FIFO, 4 kBytes	0xF000 to 0xFFFF

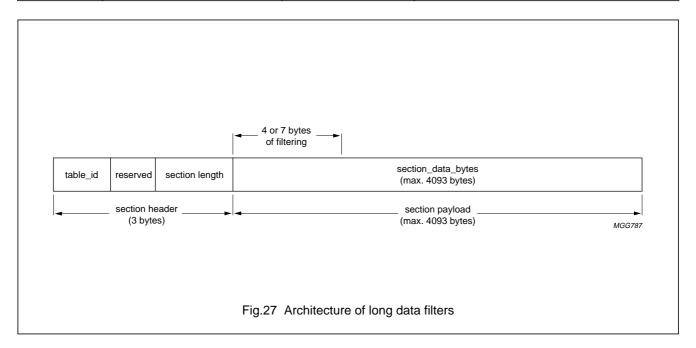


 Table 11
 Explanation of Fig.27

SYNTAX	DESCRIPTION
Table_id	8-bit section identification field
Reserved	4 reserved bits; section_syntax_indicator (1 bit), DVB reserved (1 bit), ISO reserved (2 bits)
Section length	number of bytes in the section following this 12-bit word
Section_data_byte	8-bit field carrying section payload information

MPEG-2 systems demultiplexer

SAA7205H

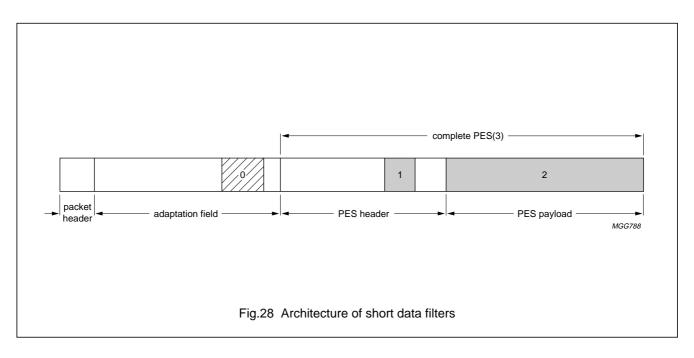


Table 12 Explanation of Fig.28

NUMBER	PRIV_DAT AND PES/AFN	DESCRIPTION				
0	10	adaptation field private data				
1	11	PES private data				
2	01	PES payload				
3	00	complete PES				

MPEG-2 systems demultiplexer

SAA7205H

7.14.2 LONG FILTER MODULE

The long filter module is capable of accessing, for instance, electronic program guides or event information tables, transported in private sections, with a length of up to and including 4 kBytes. The configuration of the long filter module is shown in Fig. 27.

The filter consists of 4 section detectors. Each section detector selects and retrieves section data on the basis of:

PID

Table_id

7 maskable bytes (56 bits) in the section payload (see Fig. 27).

The section data detected by a certain section detector is always stored in the associated 4 kByte section buffer. As soon as an entire section of data is stored, an interrupt (interrupt: 'fltC_F_irpt', address 0x0000, see Table 13) is generated. The 4 section detectors can be separately enabled (disabled), to avoid unnecessary interrupts.

The 'filter fired' registers enable the microcontroller to track which section detector loaded its buffer (bits 'flt [F to C]_frd', address 0x0304, see Table 13). Each of the section detectors checks incoming data for errors by means of the CRC_32 mechanism specified in MPEG2 systems. If an error is detected, an error status flag is set (bit 'err_stat', see Table 13) in the filter unit. The error flag can therefore be accessed by the microcontroller.

If the microcontroller decides to read data from the long filter buffers (see Table 13; address range as indicated in Table 10) it can determine when to stop reading in two ways. It can periodically poll the 'flt [F to C]_stat' bits in the interrupt status register (address 0x0003, see Table 13). These bits go LOW as soon as the last valid section data word is read from the section buffer.

Another possibility is for the microcontroller to read the 'high_address' word ('hadr [9 to 0]', see Table 13). This word is proportional to the number of valid section words (1 word equals 2 bytes) that was written into the buffer. Actually #words equal 'high_address' + 1. This number equals the number of read cycles that has to be performed to retrieve all valid data from the buffer.

If the buffer contents have to be removed without being read, the microcontroller can write a logic 1 to the 'rst_bf [F to C]' bit (address 0x0315, see Table 13) thus releasing the buffer. Another possibility is to perform one write address operation to (0x.... - hadr [9 to 0] + 1). The internal auto-increment address counter is thus set to the last byte in the buffer and the filters are reactivated, after having been idle during buffer emptying.

7.14.3 SUBTITLING FILTER

The subtitling filter is capable of accessing, for instance, subtitling data transported in PES packets, transport packet private data or PES private data. The architecture of the subtitling filter is shown in Figs 27 and 28.

The filter consists of 1 PES detector, which selects and retrieves data on the basis of PID filtering. The subtitling data (including PES header), or private data (without headers) detected by the filter is stored in a 4 kByte PES FIFO.

The microcontroller can read the data in the FIFO one word (equals 2 bytes) at a time. The 'subt_cont' (address 0x0303, see Table 13) register indicates the number of bytes in the FIFO. If this number is odd, one byte remains after reading all words. Before reading the last byte the 'hlt_adr_ptr' bit has to be set (address 0x0301, see Table 13). The valid byte can be found in the MSB's. The first byte of new data is stored in the LSB. Reset the 'hlt_adr_ptr' before reading the new data.

An interrupt 'subt_irpt' (address 0x0000, see Table 13) is generated as soon as the FIFO contains more than a programmable level of bytes. This level may indicate that there is just enough room in the FIFO to store one additional packet payload. The microcontroller should therefore start reading data, or halt data retrieval ('enable' = 0, address 0x0300, see Table 13) otherwise an overflow may occur.

The subtitling filter is capable of retrieving private data on the basis of PID selection (word: 'subt_pid', address 0x0300, see Table 13) by programming 'priv_dat' to logic 1 (address 0x0301, see Table 13). The filter can be programmed to retrieve transport_private_data (bit: 'pes_afn' = 0, address 0x0301, see Table 13) or PES_private_data ('pes_afn' = 1) for a selected PID. The filter is separately enabled (bit 'enable', address 0x0300, see Table 13).

SAA7205H

PROGRAMMING THE DEMULTIPLEXER

An overview of the registers and buffer in the Demultiplexer that are available for microcontroller access is incorporated in see Table 13. The table contains information on register functionality, addressing, accessibility (read only = - R -, write only = - W -, read/write = - R/\overline{W} -) and the meaning of the individual bits in a register. The shaded areas in the table indicate registers which are also directly addressable by the microcontroller.

Table 13 Demultiplexer programming

REGISTER	ADDR	BITS								
FUNCTION	(HEX)	15/7	14/6	13/5	12/4	11/3	10/2	9/1	8/0	
IRPT	0x0000 - R/W -	-	-	fltC_F_ irpt	ftl0_B_ irpt	cc_txt_ irpt	subt_ irpt	prs_ sync_ lost	irpt_ audio_ diff	
		irpt_ audio_ rstrt	irpt_ audio_ strt	irpt_ audio_ pts	irpt_ discnt_ a	irpt_ video_ strt	irpt_ video_ dts	irpt_ video_ pts	irpt_ discnt_ b	
IRPT_MASK	0x0001	-	-	msk13	msk12	msk11	msk10	msk9	msk8	
	- W -	msk7	msk6	msk5	msk4	msk3	msk2	msk1	msk0	
IRPT_STATUS	0x0002 - R -	_	_	fltC_F_ stat	flt0_B_ stat	cc_txt_ stat	subt_ stat	prs_ sync_ stat	audio_ diff_ stat	
		audio_ rstrt_ stat	audio_ strt_ stat	audio_ pts_ stat	audio_ discnt_ stat	video_ strt_ stat	video_ dts_ stat	video_ pts_ stat	video_ discnt_ stat	
IRPT_STATUS	0x0003	fltF_ stat	fltE_ stat	fltD_ stat	fltC_ stat	fltB_ stat	fltA_ stat	flt9_ stat	flt8_ stat	
	- R -	flt7_ stat	flt6_ stat	flt5_ stat	flt4_ stat	flt3_ stat	flt2_ stat	flt1_ stat	flt0_ stat	
VER-SION_ NR	0x0004	0	0	0	0	0	0	0	0	
	- R -	0	0	0	0	0	0	1	1	
EMPTY	0x0003 -	_	_	_	_	_	_	_	_	
	0x00FF	_	_	_	_	_	_	_	_	
PRS_INP CTRL	0x0100	_	_	_	_	_	_	_	_	
	- W -	_	_	_	_	_	prs_ reset	Bad_ polarity	9 MHz_ interface	
EMPTY	0x0101 -	_	_	_	_	_	_	_	_	
	0x01FF	_	_	_	_	_	_	_	_	
ERR_H CNT	0x0200	cnt15	cnt14	cnt13	cnt12	cnt11	cnt10	cnt9	cnt8	
	- R/W -	cnt7	cnt6	cnt5	cnt4	cnt3	cnt2	cnt1	cnt0	
EMPTY	0x0201 -	_	_	_	_	_	_	_	_	
	0x02FF	_	_	_	_	_	_	_	_	

REGISTER	ADDR (HEX)	BITS								
FUNCTION		15/7	14/6	13/5	12/4	11/3	10/2	9/1	8/0	
SUBT_PID	0x0300	-	_	Enable	Pid12	Pid_11	Pid_10	Pid_9	Pid_8	
	- W -	Pid_7	Pid_6	Pid_5	Pid_4	Pid_3	Pid_2	Pid_1	Pid_0	
SUBT_ CTRL	0x0301	_	_	_	_	_	_	_	_	
	-W -	_	_	_	_	hlt_rd_ptr	μc_rst	priv_ dat	pes/afn	
SUBT_	0x0302	_	_	_	_	threshold 11	threshold 10	threshold 9	threshold 8	
threshold	-W -	threshold 7	threshold 6	threshold 5	threshold 4	threshold 3	threshold 2	threshold 1	threshold 0	
SUBT_	0x0303	_	_	_	_	nr_11	nr_10	nr_9	nr_8	
contents - R -	nr_7	nr_6	nr_5	nr_4	nr_3	nr_2	nr_1	nr_0		
FLT_ FIRED	0x0304	fltF_frd	fltE_frd	fltD_frd	fltC_frd	fltB_frd	fltA_frd	flt9_frd	flt8_frd	
-R -	-R -	flt7_frd	flt6_frd	flt5_frd	flt4_frd	flt3_frd	flt2_frd	flt1_frd	flt0_frd	
FLT0_ STATUS	0x0305	err_stat	_	_	_	_	_	_	hadr8	
-R -	-R -	hadr7	hadr6	hadr5	hadr4	hadr3	hadr2	hadr1	hadr0	
FLT1_STATUS 0x030	0x0306	err_stat	_	_	_	_	_	_	hadr8	
	-R -	hadr7	hadr6	hadr5	hadr4	hadr3	hadr2	hadr1	hadr0	
FLT2_STATUS	0x0307	err_stat	_	_	_	_	_	_	hadr8	
	-R -	hadr7	hadr6	hadr5	hadr4	hadr3	hadr2	hadr1	hadr0	
FLT3_ STATUS	0x0308	err_stat	_	_	_	_	_	_	hadr8	
	-R -	hadr7	hadr6	hadr5	hadr4	hadr3	hadr2	hadr1	hadr0	
FLT4_ STATUS	0x0309	err_stat	_	_	_	_	_	_	hadr8	
	-R -	hadr7	hadr6	hadr5	hadr4	hadr3	hadr2	hadr1	hadr0	
FLT5_ STATUS	0x030A	err_stat	_	_	_	_	_	_	hadr8	
	-R -	hadr7	hadr6	hadr5	hadr4	hadr3	hadr2	hadr1	hadr0	
FLT6_ STATUS	0x030B	err_stat	_	_	_	_	_	_	hadr8	
	-R -	hadr7	hadr6	hadr5	hadr4	hadr3	hadr2	hadr1	hadr0	
FLT7_ STATUS	0x030C	err_stat	_	_	_	_	_	_	hadr8	
	-R -	hadr7	hadr6	hadr5	hadr4	hadr3	hadr2	hadr1	hadr0	
FLT8_ STATUS	0x030D	err_stat	_	_	_	_	_	_	hadr8	
	-R -	hadr7	hadr6	hadr5	hadr4	hadr3	hadr2	hadr1	hadr0	
FLT9_ STATUS	0x030E	err_stat	_	-	-	-	_	_	hadr8	
	-R -	hadr7	hadr6	hadr5	hadr4	hadr3	hadr2	hadr1	hadr0	

MPEG-2

systems demultiplexer

Preliminary specification

BITS

0x031D

- W -

msk 7

tblid 7

msk 6

tblid 6

msk 5

tblid 5

msk 4

tblid 4

msk 3

tblid 3

msk 2

tblid 2

msk_1

tblid_1

msk 0

tblid 0

FLT1 TBL ID

REGISTER

FUNCTION

FLT1_BYTE0

ADDR

(HEX)

0x031E

15/7

msk7

14/6

msk6

13/5

msk5

Philips Semiconductors

Preliminary specification

_									
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLT1_BYTE1	0x031F	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLT1_BYTE2	0x0320	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLT1_BYTE3	0x0321	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLT2_ PID	_	_	Enable	Pid12	Pid_11	Pid_10	Pid_9	Pid_8	
	Pid_7	Pid_6	Pid_5	Pid_4	Pid_3	Pid_2	Pid_1	Pid_0	
FLT2_ TBL_ID	0x0323	msk_7	msk_6	msk_5	msk_4	msk_3	msk_2	msk_1	msk_0
- W -	tblid_7	tblid_6	tblid_5	tblid_4	tblid_3	tblid_2	tblid_1	tblid_0	
FLT2_BYTE0	0x0324	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLT2_BYTE1	0x0325	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLT2_BYTE2	0x0326	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLT2_BYTE3	0x0327	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLT3_ PID	0x0328	_	_	Enable	Pid12	Pid_11	Pid_10	Pid_9	Pid_8
	- W -	Pid_7	Pid_6	Pid_5	Pid_4	Pid_3	Pid_2	Pid_1	Pid_0
FLT3_ TBL_ID	0x0329	msk_7	msk_6	msk_5	msk_4	msk_3	msk_2	msk_1	msk_0
	- W -	tblid_7	tblid_6	tblid_5	tblid_4	tblid_3	tblid_2	tblid_1	tblid_0
FLT3_BYTE0	0x032A	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLT3_BYTE1	0x032B	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLT3_ BYTE2	0x032C	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0

BITS

11/3

msk3

10/2

msk2

9/1

ms1

8/0

msk0

12/4

msk4

REGISTER	ADDR	BITS								
FUNCTION	(HEX)	15/7	14/6	13/5	12/4	11/3	10/2	9/1	8/0	
FLT3_BYTE3	0x032D	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLT4_ PID	0x032E	_	_	Enable	Pid12	Pid_11	Pid_10	Pid_9	Pid_8	
	- W -	Pid_7	Pid_6	Pid_5	Pid_4	Pid_3	Pid_2	Pid_1	Pid_0	
FLT4_ TBL_ID	0x032F	msk_7	msk_6	msk_5	msk_4	msk_3	msk_2	msk_1	msk_0	
	- W -	tblid_7	tblid_6	tblid_5	tblid_4	tblid_3	tblid_2	tblid_1	tblid_0	
FLT4_ BYTE0	0x0330	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
- W -	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLT4_ BYTE1	0x0331	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0		
FLT4_ BYTE2	0x0332	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0		
FLT4_ BYTE3	0x0333	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
- W -	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLT5_ PID	0x0334	_	_	_	Pid12	Pid_11	Pid_10	Pid_9	Pid_8	
	- W -	Pid_7	Pid_6	Pid_5	Pid_4	Pid_3	Pid_2	Pid_1	Pid_0	
FLT5_ TBL_ID	0x0335	msk_7	msk_6	msk_5	msk_4	msk_3	msk_2	msk_1	msk_0	
	- W -	tblid_7	tblid_6	tblid_5	tblid_4	tblid_3	tblid_2	tblid_1	tblid_0	
FLT5_ BYTE0	0x0336	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLT5_ BYTE1	0x0337	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLT5_ BYTE2	0x0338	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLT5_ BYTE3	0x0339	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLT6_ PID	0x033A	-	_	Enable	Pid12	Pid_11	Pid_10	Pid_9	Pid_8	
	- W -	Pid_7	Pid_6	Pid_5	Pid_4	Pid_3	Pid_2	Pid_1	Pid_0	
FLT6_ TBL_ID	0x033B	msk_7	msk_6	msk_5	msk_4	msk_3	msk_2	msk_1	msk_0	
	- W -	tblid_7	tblid_6	tblid_5	tblid_4	tblid_3	tblid_2	tblid_1	tblid_0	

REGISTER	ADDR	BITS								
FUNCTION	(HEX)	15/7	14/6	13/5	12/4	11/3	10/2	9/1	8/0	
FLT6_ BYTE0	0x033C	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLT6_ BYTE1	0x033D	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLT6_ BYTE2	0x033E	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLT6_ BYTE3	0x033F	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLT7_ PID	0x0340	_	_	Eanble	Pid12	Pid_11	Pid_10	Pid_9	Pid_8	
- W -	Pid_7	Pid_6	Pid_5	Pid_4	Pid_3	Pid_2	Pid_1	Pid_0		
FLT7_ TBL_ID		msk_7	msk_6	msk_5	msk_4	msk_3	msk_2	msk_1	msk_0	
	tblid_7	tblid_6	tblid_5	tblid_4	tblid_3	tblid_2	tblid_1	tblid_0		
FLT7_ BYTE0	0x0342	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
- W -	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLT7_ BYTE1	0x0343	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLT7_ BYTE2	0x0344	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLT7_ BYTE3	0x0345	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLT8_ PID	0x0346	_	_	Enable	Pid12	Pid_11	Pid_10	Pid_9	Pid_8	
	- W -	Pid_7	Pid_6	Pid_5	Pid_4	Pid_3	Pid_2	Pid_1	Pid_0	
FLT8_ TBL_ID	0x0347	msk_7	msk_6	msk_5	msk_4	msk_3	msk_2	msk_1	msk_0	
	- W -	tblid_7	tblid_6	tblid_5	tblid_4	tblid_3	tblid_2	tblid_1	tblid_0	
FLT8_ BYTE0	0x0348	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLT8_ BYTE1	0x0349	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLT8_ BYTE2	0x034A	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	

REGISTER	ADDR (HEX)	BITS								
FUNCTION		15/7	14/6	13/5	12/4	11/3	10/2	9/1	8/0	
FLT8_ BYTE3	0x034B	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLT9_ PID	0x034C	_	_	Enable	Pid12	Pid_11	Pid_10	Pid_9	Pid_8	
	- W -	Pid_7	Pid_6	Pid_5	Pid_4	Pid_3	Pid_2	Pid_1	Pid_0	
FLT9_ TBL_ID	0x034D	msk_7	msk_6	msk_5	msk_4	msk_3	msk_2	msk_1	msk_0	
	- W -	tblid_7	tblid_6	tblid_5	tblid_4	tblid_3	tblid_2	tblid_1	tblid_0	
FLT9_ BYTE0	0x034E	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLT9_BYTE1		msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLT9_ BYTE2		msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0		
LT9_ BYTE3	0x0351	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
- W	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLTA_ PID	0x0352	_	_	Enable	Pid12	Pid_11	Pid_10	Pid_9	Pid_8	
- W -	- W -	Pid_7	Pid_6	Pid_5	Pid_4	Pid_3	Pid_2	Pid_1	Pid_0	
FLTA_ TBL_ID	0x0353 - W -	msk_7	msk_6	msk_5	msk_4	msk_3	msk_2	msk_1	msk_0	
		tblid_7	tblid_6	tblid_5	tblid_4	tblid_3	tblid_2	tblid_1	tblid_0	
FLTA_ BYTE0	0x0354	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLTA_ BYTE1	0x0355	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLTA_ BYTE2	0x0356	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLTA_ BYTE3	0x0357	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLTB_ PID	0x0358	_	_	Enable	Pid12	Pid_11	Pid_10	Pid_9	Pid_8	
	- W -	Pid_7	Pid_6	Pid_5	Pid_4	Pid_3	Pid_2	Pid_1	Pid_0	
FLTB_ TBL_ID	0x0359	msk_7	msk_6	msk_5	msk_4	msk_3	msk_2	msk_1	msk_0	
	- W -	tblid_7	tblid_6	tblid_5	tblid_4	tblid_3	tblid_2	tblid_1	tblid_0	

REGISTER	ADDR	BITS								
FUNCTION	(HEX)	15/7	14/6	13/5	12/4	11/3	10/2	9/1	8/0	
FLTB_ BYTE0	0x035A	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLTB_ BYTE1	0x035B	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLTB_ BYTE2	0x035C	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0		
FLTB_ BYTE3	0x035D	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLTC_ PID	0x035E	_	_	Enable	Pid12	Pid_11	Pid_10	Pid_9	Pid_8	
- W -	Pid_7	Pid_6	Pid_5	Pid_4	Pid_3	Pid_2	Pid_1	Pid_0		
-LTC_ TBL_ID	0x035F	msk_7	msk_6	msk_5	msk_4	msk_3	msk_2	msk_1	msk_0	
	- W -	tblid_7	tblid_6	tblid_5	tblid_4	tblid_3	tblid_2	tblid_1	tblid_0	
-LTC_ BYTE0	0x0360	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
-LTC_ BYTE1	0x0361	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLTC_BYTE2	0x0362	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLTC_BYTE3	0x0363	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLTC_ BYTE4	0x0364	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLTC_ BYTE5	0x0365	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLTC_BYTE6	0x0366	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
-LTD_ PID	0x0367	<u> </u>	_	Enable	Pid12	Pid_11	Pid_10	Pid_9	Pid_8	
	- W -	Pid_7	Pid_6	Pid_5	Pid_4	Pid_3	Pid_2	Pid_1	Pid_0	
FLTD_ TBL_ID	0x0368	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0	
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	

REGISTER	ADDR				В	ITS			
FUNCTION	(HEX)	15/7	14/6	13/5	12/4	11/3	10/2	9/1	8/0
FLTD_ BYTE0	0x0369	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLTD_ BYTE1	0x036A	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLTD_ BYTE2	0x036B	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLTD_ BYTE3	0x036C	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLTD_ BYTE4	0x036D	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLTD_ BYTE5	0x036E	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLTD_ BYTE6	0x036F	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLTE_ PID	0x0370	_	_	Enable	Pid12	Pid_11	Pid_10	Pid_9	Pid_8
	- W -	Pid_7	Pid_6	Pid_5	Pid_4	Pid_3	Pid_2	Pid_1	Pid_0
FLTE_ TBL_ID	0x0371	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLTE_ BYTE0	0x0372	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLTE_ BYTE1	0x0373	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLTE_ BYTE2	0x0374	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLTE_BYTE3	0x0375	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLTE_ BYTE4	0x0376	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLTE_ BYTE5	0x0377	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0

REGISTER	ADDR				E	BITS			
FUNCTION	(HEX)	15/7	14/6	13/5	12/4	11/3	10/2	9/1	8/0
FLTE_ BYTE6	0x0378	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLTF_ PID	0x0379	_	_	Enable	Pid12	Pid_11	Pid_10	Pid_9	Pid_8
	- W -	Pid_7	Pid_6	Pid_5	Pid_4	Pid_3	Pid_2	Pid_1	Pid_0
FLTF_ TBL_ID	0x037A	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLTF_ BYTE0	0x037B	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLTF_ BYTE1	0x037C	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLTF_ BYTE2	0x037D	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLTF_ BYTE3		msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0	
FLTF_ BYTE4	0x037F	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLTF_ BYTE5	0x0380	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
FLTF_ BYTE6	0x0381	msk7	msk6	msk5	msk4	msk3	msk2	ms1	msk0
	- W -	bit_7	bit_6	bit_5	bit_4	bit_3	bit_2	bit_1	bit_0
EMPTY	0x0380 -	_	_	_	_	_	_	_	_
	0x03FF	_	_	_	_	_	_	_	_
PCR_ CTRL	0x0400	_	_	_	_	_	_	_	_
	- W -	-	_	-	_	-	Stop_ Toggle	Stop_ Toggle_B	Stop_ Toggle_A
PCR_ PID	0x0401	_	_	enable	pid12	pid11	pid10	pid9	pid8
	- W -	pid7	pid6	pid5	pid4	pid3	pid2	pid1	pid0
	0x0402 - R -	PCR_ base32	PCR_ base31	PCR_ base30	PCR_ base29	PCR_ base28	PCR_ base27	PCR_ base26	PCR_ base25
		PCR_ base24	PCR_ base23	PCR_ base22	PCR_ base21	PCR_ base20	PCR_ base19	PCR_ base18	PCR_ base17

Preliminary specification

REGISTER	ADDR				ВГ	ΓS			
FUNCTION	(HEX)	15/7	14/6	13/5	12/4	11/3	10/2	9/1	8/0
PCR_BASE_ LSW	0x0403 - R -	PCR_ base16	PCR_ base15	PCR_ base14	PCR_ base13	PCR_ base12	PCR_ base11	PCR_ base10	PCR_ base9
		PCR_base8	PCR_base7	PCR_ base6	PCR_ base5	PCR_base4	PCR_base3	PCR_base2	PCR_base1
PCR_ EXT	0x0404	PCR_base0	_	_	_	_	_	_	PCR_ ext8
	- R -	PCR_ ext7	PCR_ ext6	PCR_ ext5	PCR_ ext4	PCR_ ext3	PCR_ ext2	PCR_ ext1	PCR_ ext0
PCR_BASE_	0x0405	_	_	_	_	_	_	_	base_ diff24
DIFF_ MSW	- R -	base_ diff23	base_ diff22	base_ diff21	base_ diff20	base_ diff19	base_ diff18	base_ diff17	base_ diff16
PCR_BASE_	0x0406	base_ diff15	base_ diff14	base_ diff13	base_ diff12	base_ diff11	base_ diff10	base_ diff9	base_ diff8
DIFF_ LSW	- R -	base_ diff7	base_ diff6	base_ diff5	base_ diff4	base_ diff3	base_ diff2	base_ diff1	base_ diff0
PCR_EXT_	0x0407	_	_	_	_	_	_	ext_ diff9	ext_ diff8
DIFF	- R -	ext_ diff7	ext_ diff6	ext_ diff5	ext_ diff4	ext_ diff3	ext_ diff2	ext_ diff1	ext_ diff0
VIN_ H_POS	0x0408	_	_	_	_	_	hpos10	hpos9	hpos8
	- R -	hpos7	hpos6	hpos5	hpos4	hpos3	hpos2	hpos1	hpos0
VIN_ V_POS	0x0409	_	_	_	_	_	_	vpos9	vpos8
	- R -	vpos7	vpos6	vpos5	vpos4	vpos3	vpos2	vpos1	vpos0
EMPTY	0x040A -	_	_	_	_	_	_	_	_
	0x04FF	_	_	_	_	_	_	_	_
VIDEO_ PID	0x0500	_	_	enable	pid12	pid11	pid10	pid9	pid8
	- R -	pid7	pid6	pid5	pid4	pid3	pid2	pid1	pid0
VIDEO_ PTS	0x0501	v_pts31	v_pts30	v_pts29	v_pts28	v_pts27	v_pts26	v_pts25	v_pts24
	- R -	v_pts23	v_pts22	v_pts21	v_pts20	v_pts19	v_pts18	v_pts17	v_pts16
VIDEO_ PTS	0x0502	v_pts15	v_pts14	v_pts13	v_pts12	v_pts11	v_pts10	v_pts9	v_pts8
	- R -	v_pts7	v_pts6	v_pts5	v_pts4	v_pts3	v_pts2	v_pts1	v_pts0
VIDEO_ DTS	0x0503	v_dts31	v_dts30	v_dts29	v_dts28	v_dts27	v_dts26	v_dts25	v_dts24
	- R -	v_dts23	v_dts22	v_dts21	v_dts20	v_dts19	v_dts18	v_dts17	v_dts16
VIDEO_ DTS	0x0504	v_dts15	v_dts14	v_dts13	v_dts12	v_dts11	v_dts10	v_dts9	v_dts8
	- R -	v_dts7	v_dts6	v_dts5	v_dts4	v_dts3	v_dts2	v_dts1	v_dts0
VIDEO_	0x0505	_	_	_	_	_	-	_	_
EMUPTS	- W -	v_emu_ pts23	v_emu_ pts22	v_emu_ pts21	v_emu_ pts20	v_emu_ pts19	v_emu_ pts18	v_emu_ pts17	v_emu_ pts16

Preliminary specification

REGISTER	ADDR				ВГ	гѕ			
FUNCTION	(HEX)	15/7	14/6	13/5	12/4	11/3	10/2	9/1	8/0
V_ FIFO_	0x0513	_	_	_	_	-	_	_	v_ ovfl8
THRES HOLD	- W -	v_ ovfl7	v_ ovfl6	v_ ovfl5	v_ ovfl4	v_ ovfl3	v_ ovfl2	v_ ovfl1	v_ ovfl0
EMPTY	0x0514 -	_	_	_	_	_	_	_	_
	0x05FF	_	_	_	_	_	_	_	_
AUDIO_ PID	0x0600	-	_	enable	pid12	pid11	pid10	pid9	pid8
	- W -	pid7	pid6	pid5	pid4	pid3	pid2	pid1	pid0
AUDIO_ PTS	0x0601	a_pts31	a_pts30	a_pts29	a_pts28	a_pts27	a_pts26	a_pts25	a_pts24
	- R -	a_pts23	a_pts22	a_pts21	a_pts20	a_pts19	a_pts18	a_pts17	a_pts16
AUDIO_ PTS	0x0602	a_pts15	a_pts14	a_pts13	a_pts12	a_pts11	a_pts10	a_pts9	a_pts8
	- R -	a_pts7	a_pts6	a_pts5	a_pts4	a_pts3	a_pts2	a_pts1	a_pts0
AUDIO_ DTS	0x0603	a_dts31	a_dts30	a_dts29	a_dts28	a_dts27	a_dts26	a_dts25	a_dts24
	- R -	a_dts23	a_dts22	a_dts21	a_dts20	a_dts19	a_dts18	a_dts17	a_dts16
AUDIO_ DTS	0x0604	a_dts15	a_dts14	a_dts13	a_dts12	a_dts11	a_dts10	a_dts9	a_dts8
	- R -	a_dts7	a_dts6	a_dts5	a_dts4	a_dts3	a_dts2	a_dts1	a_dts0
AUDIO_	0x0605	_	_	_	_	_	_	_	_
EMUPTS	- W-	a_emu_ pts23	a_emu_ pts22	a_emu_ pts21	a_emu_ pts20	a_emu_ pts19	a_emu_ pts18	a_emu_ pts17	a_emu_ pts16
AUDIO_ EMUPTS	0x0606 - W -	a_emu_ pts15	a_emu_ pts14	a_emu_ pts13	a_emu_ pts12	a_emu_ pts11	a_emu_ pts10	a_emu_ pts9	a_emu_ pts8
		a_emu_pts7	a_emu_pts6	a_emu_pts5	a_emu_pts4	a_emu_pts3	a_emu_pts2	a_emu_pts1	a_emu_pts0
AUDIO_STC_	0x0607	_	_	_	_	_	_	_	_
SMPL	- R -	a_stc_ smpl23	a_stc_ smpl22	a_stc_ smpl21	a_stc_ smpl20	a_stc_ smpl19	a_stc_ smpl18	a_stc_ smpl17	a_stc_ smpl16
AUDIO_STC_ SMPL	0x0608 - R -	a_stc_ smpl15	a_stc_ smpl14	a_stc_ smpl13	a_stc_ smpl12	a_stc_ smpl11	a_stc_ smpl10	a_stc_ smpl9	a_stc_ smpl8
		a_stc_ smpl7	a_stc_ smpl6	a_stc_ smpl5	a_stc_ smpl4	a_stc_ smpl3	a_stc_ smpl2	a_stc_ smpl1	a_stc_ smpl0
AUDIO_ INFO	0x0609	ad_cp_ info7	ad_cp_ info6	ad_cp_ info5	ad_cp_ info4	ad_cp_ info3	ad_cp_ info2	ad_cp_ info1	ad_cp_ info0
	- R -	_	ad_cp_ flag	cp_ info1	cp_ info0	pes_scr_ ctrl1	pes_scr_ ctrl0	ts_scr_ ctrl1	ts_scr_ ctrl0

REGISTER	ADDR				ВП	rs			
FUNCTION	(HEX)	15/7	14/6	13/5	12/4	11/3	10/2	9/1	8/0
AUDIO_OUTP	0x060A	_	_	_	av_ ratio3	av_ ratio2	av_ ratio1	av_ ratio0	av_ combi
UT_CTRL	- W -	gated_ clock	audio_ pes	pes_ pusi	μc_ downl	μc_saa 2500	μc_sw_sync	μc_free_run	μc_frc_ restart
AUDIO_ INCR0	0x060B	_	_	1	_	a0_ inc11	a0_ inc10	a0_ inc9	a0_ inc8
	- W -	a0_ inc7	a0_ inc6	a0_ inc5	a0_ inc4	a0_ inc3	a0_ inc2	a0_ inc1	a0_ inc0
AUDIO_ INCR1	0x060C	_	_	-	_	a1_ inc11	a1_ inc10	a1_ inc9	a1_ inc8
	- W -	a1_ inc7	a1_ inc6	a1_ inc5	a1_ inc4	a1_ inc3	a1_ inc2	a1_ inc1	a1_ inc0
AUDIO_PTS_	0x060D	_	_	-	_	_	_	_	_
OFFSET	- W -	pts_ offs23	pts_ offs22	pts_ offs21	pts_ offs20	pts_ offs19	pts_ offs18	pts_ offs17	pts_ offs16
AUDIO_ PTS_	0x060E	pts_ offs15	pts_ offs14	pts_ offs13	pts_ offs12	pts_ offs11	pts_ offs10	pts_ offs9	pts_ offs8
OFFSET	- W -	pts_ offs7	pts_ offs6	pts_ offs5	pts_ offs4	pts_ offs3	pts_ offs2	pts_ offs1	pts_ offs0
AUDIO_STC_ MIN_EPTS	0x060F -R -	_	-	1	_	_	_	_	stc_m_ epts24
		stc_m_ epts23	stc_m_ epts22	stc_m_ epts21	stc_m_ epts20	stc_m_ epts19	stc_m_ epts18	stc_m_ epts17	stc_m_ epts16
AUDIO_STC_ MIN_EPTS	0x0610 -R -	stc_m_ epts15	stc_m_ epts14	stc_m_ epts13	stc_m_ epts12	stc_m_ epts11	stc_m_ epts10	stc_m_ epts9	stc_m_ epts8
		stc_m_epts7	stc_m_epts6	stc_m_epts5	stc_m_epts4	stc_m_epts3	stc_m_epts2	stc_m_epts1	stc_m_epts0
AUDIO_ FRAME_	0x0611 -R -	_	_	_	_	_	frame_ len10	frame_ len9	frame_ len8
LENGTH		frame_len7	frame_ len6	frame_len5	frame_len4	frame_len3	frame_len2	frame_ len1	frame_ len0
AUDIO_	0x0612	_	_	-	_	_	_	_	padding
FRAME_ INFO	-R -	sample_ freq1	sample_ freq0	bitrate_ index3	bitrate_ index2	bitrate_ index1	bitrate_ index0	audio_ layer1	audio_ layer0
EMPTY	0x0613 -	_	_	_	_	_	_	_	_
	0x06FF	_	_	_	_	_	_	_	_
GP_HS_ CTRL	0x0700 - W -	GP_ direction	HS_ mode1	HS_ mode0	HS_ pid12	HS_ pid11	HS_ pid10	HS_ pid9	HS_ pid8
		HS_ pid7	HS_ pid6	HS_ pid5	HS_ pid4	HS_ pid3	HS_ pid2	HS_ pid1	HS_ pid0
GP_HS_ PID_ MSK	0x0701 - W -	HS_sect_flt_ en	HS_err_rmv	HS_dupl_ rmv	pid_ msk12	pid_ msk11	pid_ msk10	pid_ msk9	pid_ msk8
		pid_ msk7	pid_ msk6	pid_ msk5	pid_ msk4	pid_ msk3	pid_ msk2	pid_ msk1	pid_ msk0

REGISTER	ADDR				ВΙ	гѕ			
FUNCTION	(HEX)	15/7	14/6	13/5	12/4	11/3	10/2	9/1	8/0
GP_HS_	0x0702	hs_tbl_ id7	hs_tbl_ id6	hs_tbl_ id5	hs_tbl_ id4	hs_tbl_ id3	hs_tbl_ id2	hs_tbl_ id1	hs_tbl_ id0
TBL_ID	- W -	tid_ msk7	tid_ msk6	tid_ msk5	tid_ msk4	tid_ msk3	tid_ msk2	tid_ msk1	tid_ msk0
GP_HS_	0x0703	byte1_7	byte1_6	byte1_5	byte1_4	byte1_3	byte1_2	byte1_1	byte1_0
BYTE1	- W -	b1msk7	b1msk6	b1msk5	b1msk4	b1msk3	b1msk2	b1msk1	b1msk0
GP_HS_	0x0704	byte2_7	byte2_6	byte2_5	byte2_4	byte2_3	byte2_2	byte2_1	byte2_0
BYTE2	- W -	b2msk7	b2msk6	b2msk5	b2msk4	b2msk3	b2msk2	b2msk1	b2msk0
EMPTY	0x0705 -	_	_	_	_	_	_	_	_
	0x07FF	_	_	_	_	_	_	_	_
TXT_ CTRL	0x0800	_	_	_	_	_	_	input_ mode1	input_ mode0
		_	_	output_ mode1	output_ mode0	_	check_field	parity_sign	sync_ parity
TXT_ PID	0x0801	_	_	enable	pid12	pid11	pid10	pid9	pid8
	- W -	pid7	pid6	pid5	pid4	pid3	pid2	pid1	pid0
TXT_SW_	0x0802	_	_	_	_	_	_	_	del8
DELAY	- W -	del7	del6	del5	del4	del3	del2	del1	del0
TXT_TRSHLD	0x0803	_	_	_	_	_	thold10	thold9	thold8
	- W -	thold7	thold6	thold5	thold4	thold3	thold2	thold1	thold0
TXT_reset	0x0804 - W -	_	-	_	_	_	_	_	_
TXT_pes_info	0x0805	_	_	scrmbl_ctrl1	scrmbl_ctrl0	priority	alignment	copyright	org_or_copy
	- R -	pts_dts_ flag1	pts_dts_ flag0	escr_ flag	es_rate_flag	trickmd_flag	add_cp_info	pes_crc_flag	pes_ext_flag
TXT_ ID&unit	0x0806	dat_id7	dat_id6	dat_id5	dat_id4	dat_id3	dat_id2	dat_id1	dat_id0
	- R -	unt_id7	unt_id6	unt_id5	unt_id4	unt_id3	unt_id2	unt_id1	unt_id0
TXT_ unit_flags	0x0807	_	_	_	_	_	_	_	_
	- R -	_	_	fld_par	offset4	offset3	offset2	offset1	offset0
TXT_STATUS	0x0808	_	_	fifoerr1	fifoerr0	load11	load10	load9	load8
	- R -	load7	load6	load5	load4	load3	load2	load1	load0
EMPTY	0x0809 -	_	_	-	_	_	_	_	_
	0x08FF	_	_	_	_	_	_	_	_

REGISTER	ADDR				E	BITS			
FUNCTION	(HEX)	15/7	14/6	13/5	12/4	11/3	10/2	9/1	8/0
AUDIO_ FIFO	0x1000 -	beep15	beep14	beep13	beep12	beep11	beep10	beep9	beep8
	0x1BFF - W -	beep7	beep6	beep5	beep4	beep3	beep2	beep1	beep0
EMPTY	0x1C00 -	_	_	_	_	_	_	_	_
	0x1FFF	_	_	_	_	_	_	_	_
TXT_ FIFO	0x2000 -	txt15	txt14	txt13	txt12	txt11	txt10	txt9	txt8
	0x23FF - R/W -	txt7	txt6	txt5	txt4	txt3	txt2	txt1	txt0
EMPTY	0x2400 -	_	_	_	_	_	_	_	_
<u> </u>	0x7FFF	_	_	_	_	_	_	_	_
Sct_ buffer_0	0x8000 -	data15	data14	data13	data12	data11	data10	data9	data8
	0x81FF	data7	data6	data5	data4	data3	data2	data1	data0
Sct_ buffer_1	0x8200 -	data15	data14	data13	data12	data11	data10	data9	data8
0x83FF	data7	data6	data5	data4	data3	data2	data1	data0	
Sct_ buffer_2	0x8400 -	data15	data14	data13	data12	data11	data10	data9	data8
	0x85FF	data7	data6	data5	data4	data3	data2	data1	data0
Sct_ buffer_3	0x8600 -	data15	data14	data13	data12	data11	data10	data9	data8
	0x87FF	data7	data6	data5	data4	data3	data2	data1	data0
Sct_ buffer_4	0x8800 -	data15	data14	data13	data12	data11	data10	data9	data8
	0x89FF	data7	data6	data5	data4	data3	data2	data1	data0
Sct_ buffer_5	0x8A00-	data15	data14	data13	data12	data11	data10	data9	data8
	0x8BFF	data7	data6	data5	data4	data3	data2	data1	data0
Sct_ buffer_6	0x8C00-	data15	data14	data13	data12	data11	data10	data9	data8
	0x8DFF	data7	data6	data5	data4	data3	data2	data1	data0
Sct_ buffer_7	0x8E00-	data15	data14	data13	data12	data11	data10	data9	data8
	0x8FFF	data7	data6	data5	data4	data3	data2	data1	data0
Sct_ buffer_8	0x9000-	data15	data14	data13	data12	data11	data10	data9	data8
	0x91FF	data7	data6	data5	data4	data3	data2	data1	data0
Sct_ buffer_9	0x9200-	data15	data14	data13	data12	data11	data10	data9	data8
	0x93FF	data7	data6	data5	data4	data3	data2	data1	data0

Preliminary specification

REGISTER	ADDR				E	BITS			
FUNCTION	(HEX)	15/7	14/6	13/5	12/4	11/3	10/2	9/1	8/0
Sct_ buffer_A	0x9400-	data15	data14	data13	data12	data11	data10	data9	data8
	0x95FF	data7	data6	data5	data4	data3	data2	data1	data0
Sct_ buffer_B	0x97FF	data15	data14	data13	data12	data11	data10	data9	data8
		data7	data6	data5	data4	data3	data2	data1	data0
Sct_ buffer_C	0x9800-	data15	data14	data13	data12	data11	data10	data9	data8
	0x9FFF	data7	data6	data5	data4	data3	data2	data1	data0
Sct_ buffer_D	0xA000-	data15	data14	data13	data12	data11	data10	data9	data8
	0xA7FF	data7	data6	data5	data4	data3	data2	data1	data0
Sct_ buffer_E	0xA800-	data15	data14	data13	data12	data11	data10	data9	data8
	0xAFFF	data7	data6	data5	data4	data3	data2	data1	data0
Sct_ buffer_F	0xB000-	data15	data14	data13	data12	data11	data10	data9	data8
	0xB7FF	data7	data6	data5	data4	data3	data2	data1	data0
Subtitle buffer	0xB800-	data15	data14	data13	data12	data11	data10	data9	data8
	0xBFFF	data7	data6	data5	data4	data3	data2	data1	data0
Empty 0xC000- 0xFFFF	0xC000-	_	_	_	_	_	_	_	_
	_	_	_	_	_	_	_	_	

MPEG-2 systems demultiplexer

SAA7205H

9 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{DDD(core)}	digital supply voltage for core	-0.5	+5.0	V
V _{DDD(pads)}	digital supply voltage for pads	-0.5	+6.5	V
VI	DC input voltage	-0.5	$V_{DDD} + 0.5$	V
Vo	DC output voltage;	-0.5	V _{DDD} + 0.5	V
I _{i(max)}	maximum input current	-10	+10	mA
I _{o(max)}	maximum output current	-20	+20	mA
T _{stg}	storage temperature	-65	+150	°C
T _{amb}	operating ambient temperature	0	70	°C

10 HANDLING

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

11 DC CHARACTERISTICS

 $V_{DDD(core)} = 3.3 \text{ V}$; $V_{DDD(pads)} = 5 \text{ V}$; $T_{amb} = 25 \text{ °C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
I _{DDD(q)}	quiescent supply current	note 1	_	100	μΑ
I _{DDD(pads)}	operating current for pads	note 2	_	50	mA
I _{DDD(core)}	operating current for core	note 2	_	40	mA
V _{IL}	LOW level input voltage		0	0.8	V
V _{IH}	HIGH level input voltage		2.0	V_{DDD}	V
I _{LI}	input leakage current	$V_i = 0 \text{ V}; T_{amb} = 25 ^{\circ}\text{C}$	_	-10	μΑ
		$V_i = V_{DDD}$; $T_{amb} = 25 ^{\circ}C$	_	+10	μΑ
V _{OL}	LOW level output voltage	I _o = 4 mA	0	0.1V _{DDD}	V
V _{OH}	HIGH level output voltage	$I_0 = 4 \text{ mA}$	0.9V _{DDD}	V_{DDD}	V

Notes

- 1. $V_{DDD(pads)} = 5.5 \text{ V}$, $V_{DDD(core)} = 3.6 \text{ V}$, all inputs at V_{SS} or V_{DD} .
- 2. $V_{DDD(pads)} = 5.5 \text{ V}$, $V_{DDD(core)} = 3.6 \text{ V}$, operating inputs, unloaded outputs, $T_{amb} = 70 \, ^{\circ}\text{C}$.

MPEG-2 systems demultiplexer

SAA7205H

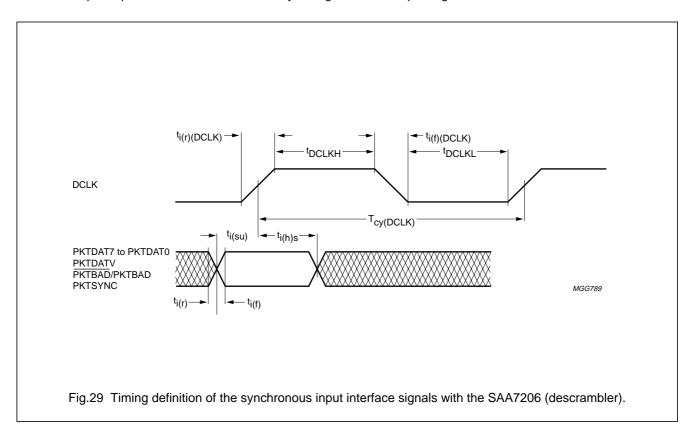
12 AC CHARACTERISTICS

 $V_{DDD(core)}$ = 3.3 V; $V_{DDD(pads)}$ = 5 V; T_{amb} = 25 °C; unless otherwise specified.

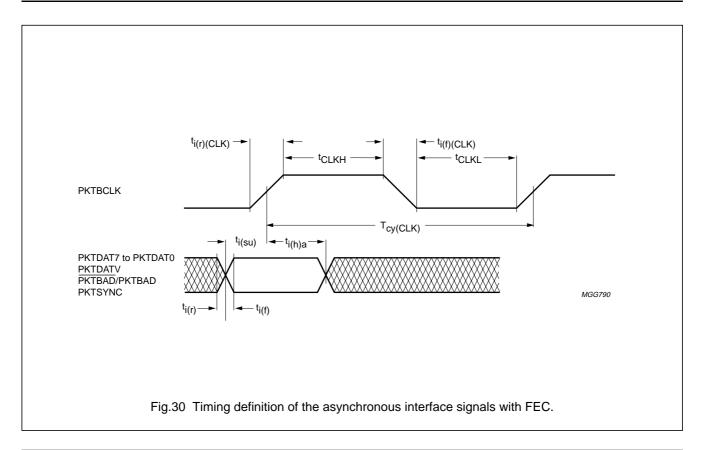
SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
Chip clock	(see Figs 43 and 44)		<u>'</u>		
T _{cy(CCLK)}	chip clock cycle time		37	_	ns
t _{r(CCLK)}	chip clock rise time		_	4	ns
t _{f(CCLK)}	chip clock fall time		_	4	ns
t _{CCLKH}	chip clock HIGH time		40	60	%
t _{CCLKL}	chip clock LOW time		40	60	%
Input interfa	ace (see Figs 29, 30, 31, 32 and 43)				
C _i	input capacitance	note 1	_	5	pF
T _{cy(DCLK)}	input clock cycle time		111	_	ns
t _{DCLKH}	input clock HIGH time		37	_	ns
t _{DCLKL}	input clock LOW time		37	_	ns
t _{i(r)(DCLK)}	input clock rise time		_	4	ns
t _{i(f)(DCLK)}	input clock fall time		_	4	ns
t _{i(r)}	input rise time		_	4	ns
t _{i(f)}	input fall time		_	4	ns
t _{i(su)}	input set-up time		18	_	ns
t _{i(h)}	input hold time		3	_	ns
t _{i(h)s}	input hold time		0	_	ns
t _{i(h)a}	input hold time		40	_	ns
Microcontro	oller interface				
Ci	input capacitance	note 1	_	5	pF
T _{cy(CS)}	chip select cycle time		111	_	ns
t _{r(CS)}	chip select rise time		_	10	ns
t _{f(CS)}	chip select fall time		_	10	ns
t _{CSH}	chip select HIGH time		20	_	ns
t _{CSL}	chip select LOW time		20	_	ns
t _{o(L-Z)}	output LOW to Z time		12		ns
t _{o(H-Z)}	output HIGH to Z time		12		ns
$t_{o(h)(R)}$	output hold time		5		ns
WRITE CYCLE	E (see Figs. 33, 34 and 35)				
t _{i(r)(W)}	input rise time		_	10	ns
$t_{i(f)(W)}$	input fall time		_	10	ns
t _{i(su)(W)}	input set-up time		15	_	ns
t _{i(h)(W)}	input hold time		5	_	ns

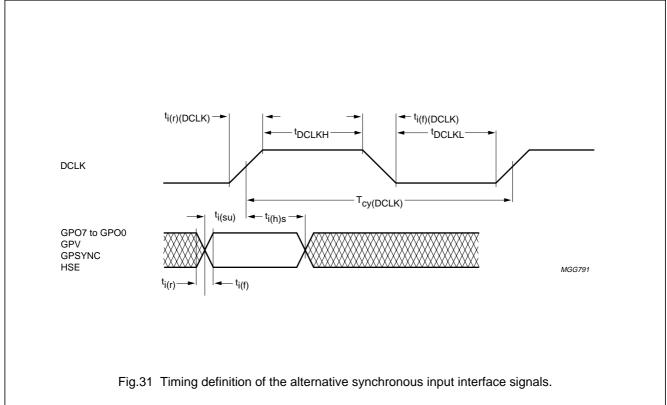
SAA7205H

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
READ CYCLE	(see Fig. 36)		ļ.		ļ.
$t_{o(r)(R)}$	output rise time		_	10	ns
t _{o(f)(R)}	output fall time		_	10	ns
$t_{o(d)(R)}$	output delay time		_	30	ns
	CYCLE (see Fig.37)	-	!	'	!
t _{CSL(R)}	chip select LOW time for read		240	_	ns
t _{o(d)(1R)}	output delay time on first byte			240	ns
t _{o(d)(2R)}	output delay time on second byte		_	30	ns
$t_{o(r)(R)}$	output rise time		_	10	ns
$t_{o(f)(R)}$	output fall time		_	10	ns
Output inte	rface				
 C _o	output capacitance	note 1		10	pF
C _L	output load capacitance		_	50	pF
T _{cy(DCLK)}	output clock cycle time of the descrambler clock		111	_	ns
t _{r(CLKO)}	output clock rise time		_	10	ns
t _{f(CLKO)}	output clock fall time		_	10	ns
t _{CLKOH}	output clock HIGH time		25	_	ns
t _{CLKOL}	output clock LOW time		25	_	ns
t _{o(r)}	output rise time		_	10	ns
t _{o(f)}	output fall time		_	10	ns
t _{o(h)}	output hold time	C _L = 5 pF	3	_	ns
$t_{o(d)}$	output delay time	C _L = 30 pF	_	20	ns
t _{o(d)p}	output delay time	C _L = 5 pF	0	_	ns
AUDIO INTER	FACE (see Fig.44)				
T _{cy(CLKOa)}	output clock cycle time		2232	31250	ns
t _{CLKOHa}	output clock HIGH time		40	60	%
t _{CLKOLa}	output clock LOW time		40	60	%
GP/HS INTE	RFACE (see Figs 38 and 39)		•		'
t _{o(h)g}	output hold time		74	_	ns
t _{o(d)g}	output delay time		_	t _{o(h)g} + 20	ns
t _{o(h)h}	output hold time		2		ns
t _{o(d)h}	output delay time		_	t _{o(h)h} + 8	ns
	ACE (see Figs 44 and 48)	-1	I		<u> </u>
T _{cy(CLKOtt)}	output clock cycle time		111	148	ns
t _{CLKOHtt}	output clock HIGH time		37	74	ns
t _{CLKOLtt}	output clock LOW time		37	74	ns
t _{o(h)tt}	output clock HIGH time	C _L = 5 pF	68	_	ns
t _{o(d)tt}	output clock LOW time	C _L = 30 pF	_	t _{o(h)tt} + 15	ns

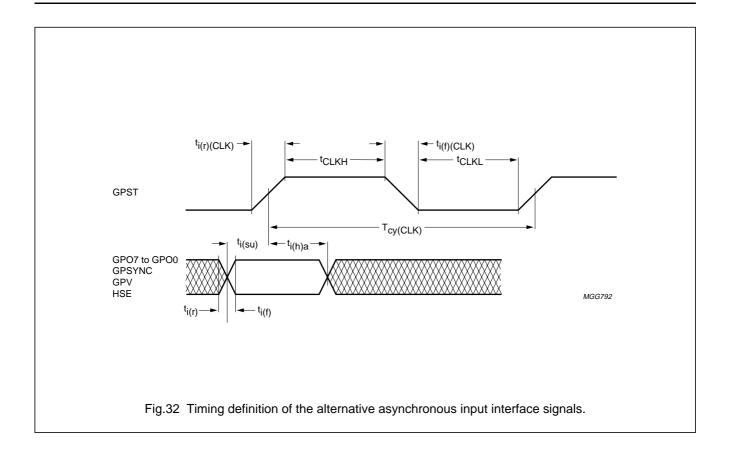

MPEG-2 systems demultiplexer

SAA7205H

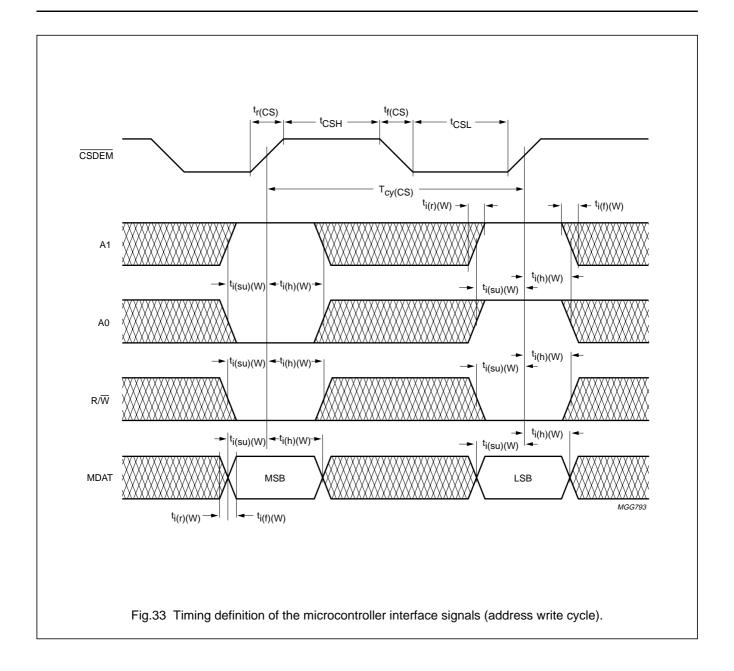

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
SRAM interface (see Figs 49 and 50)					
T _{cy(W)}	write cycle time		86	98	ns
t _{su(A)}	address set-up to write enable		12	28	ns
t _{h(A)}	WE inactive to end of RAMA		12	_	ns
t _W	pulse width		35	_	ns
t _{su(D-W)}	data set-up to write end		32	_	ns
t _{h(D-W)}	data hold from write end		12	_	ns
t _{su(OE-RAMA)}	OE to RAM A set-up time		- 5	+5	ns
t _{AV}	address valid time		69	_	ns
t _{dat(Z-OE)}	data 3-state to OE inactive		12	24	ns
T _{cy(R)}	read cycle time		123	135	ns
t _{su(A-OE)}	address set-up to OE		10	24	ns
$t_{su(\overline{WE}-\overline{OE})}$	WE to OE set-up time		_	60	ns
t _{d(DAT)(h)}	data hold delay time		0	_	ns

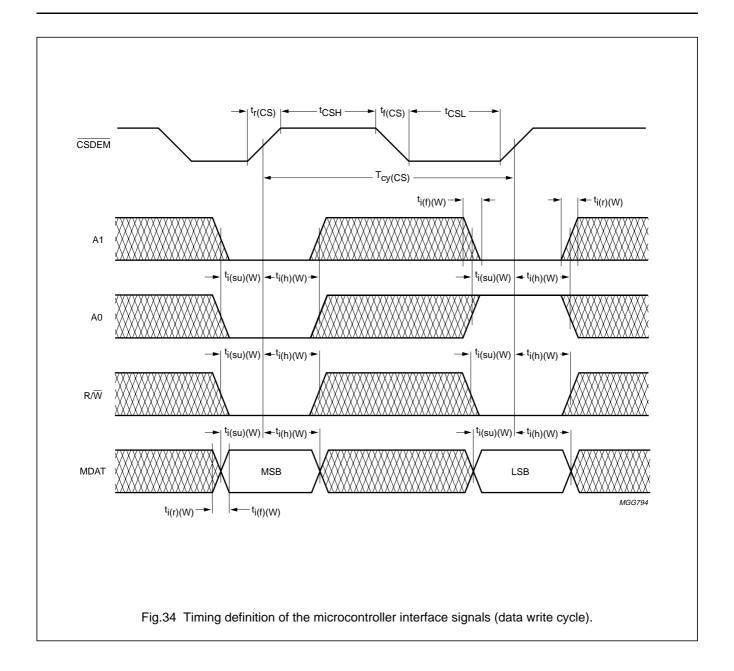

Note

1. Actual input capacitance maximum value may change because of package selection.



SAA7205H




SAA7205H

SAA7205H

SAA7205H

SAA7205H

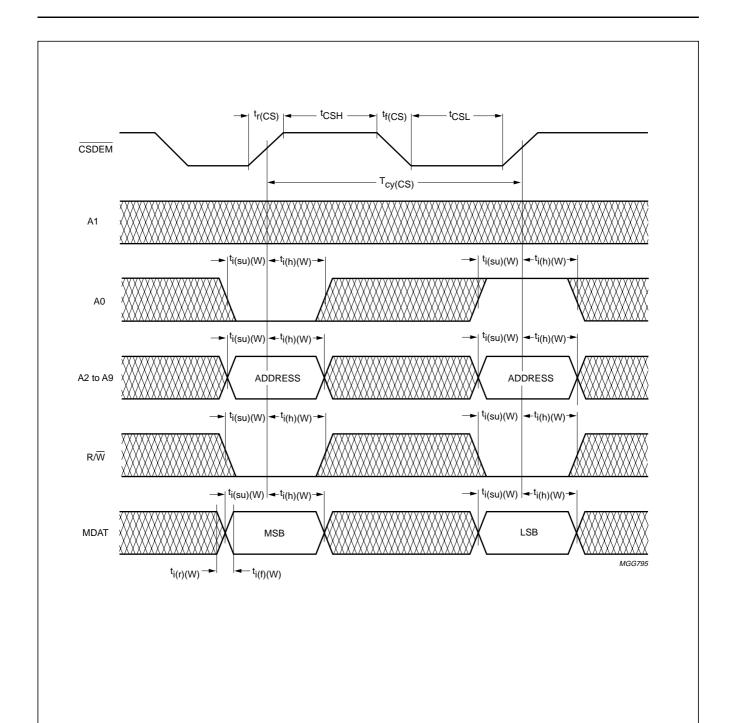
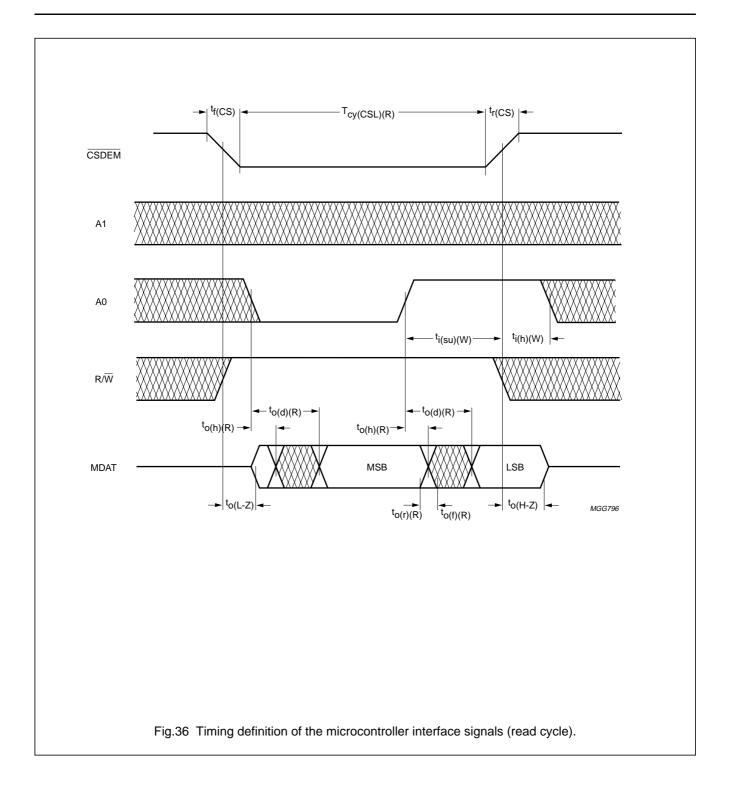
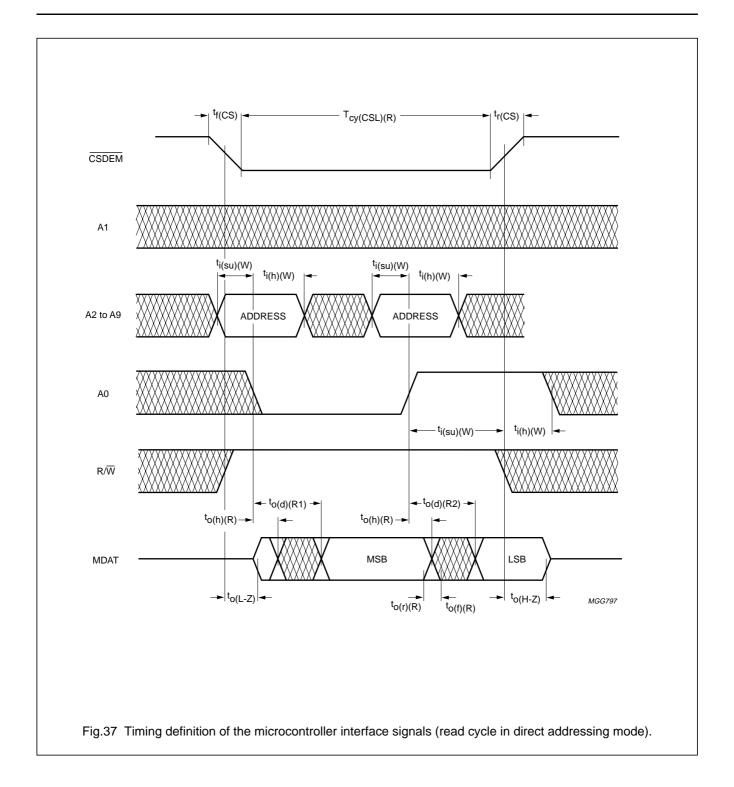
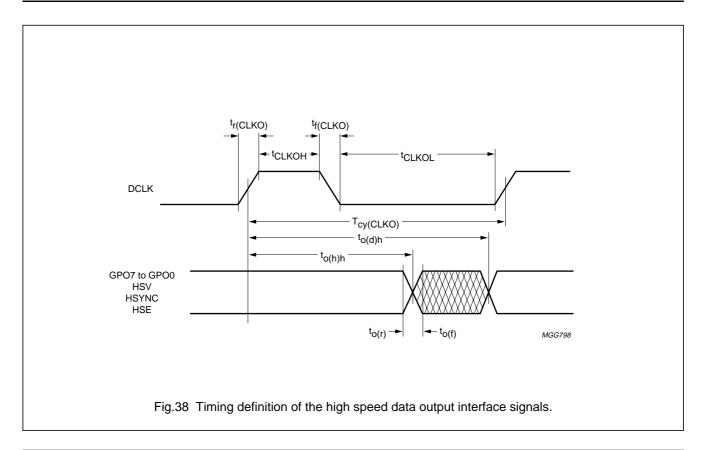
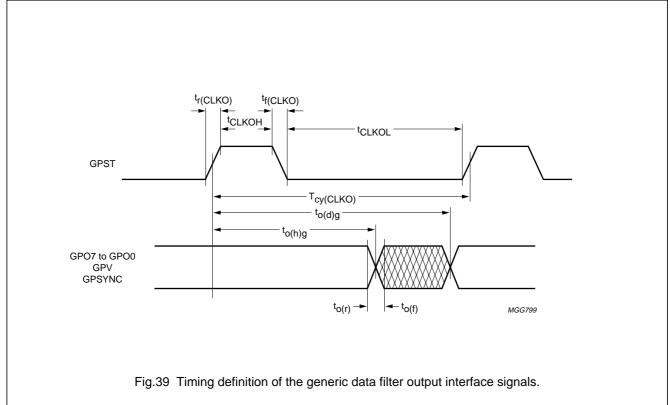
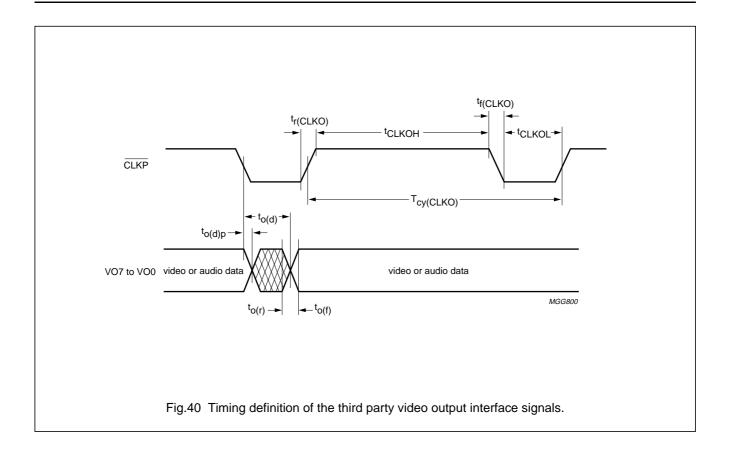




Fig.35 Timing definition of the microcontroller interface signals (data write cycle in direct addressing mode).

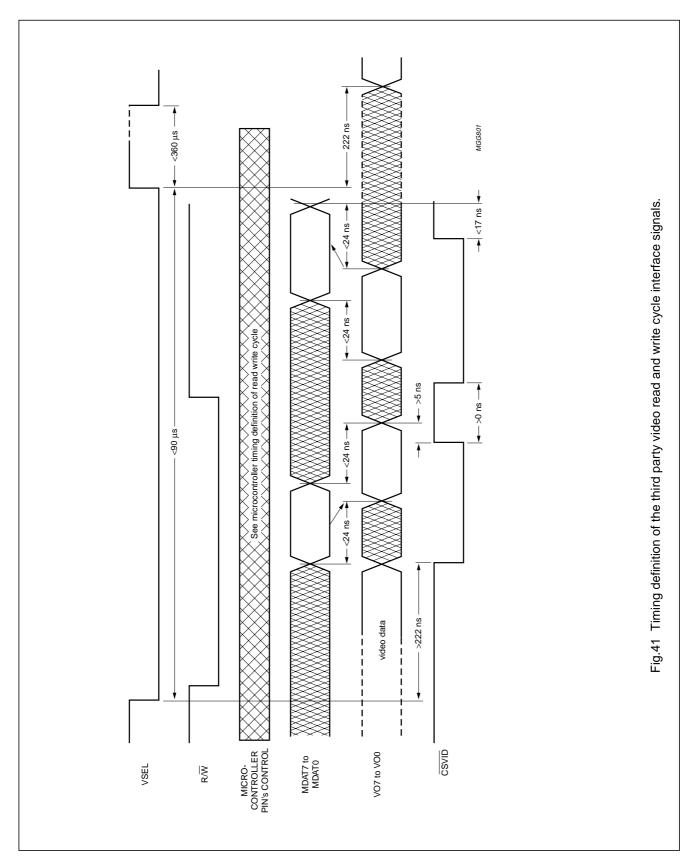

SAA7205H

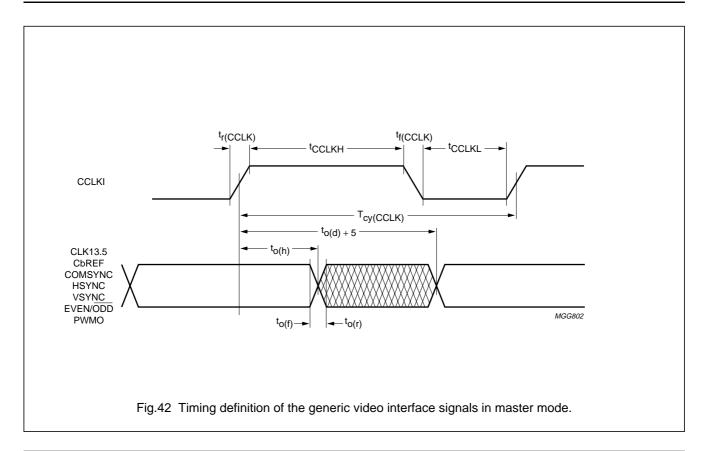


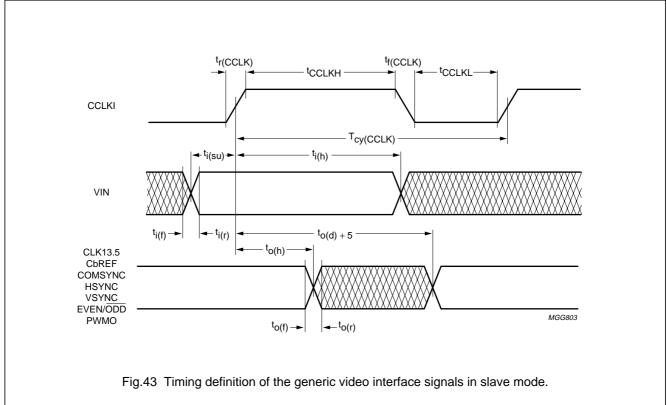
SAA7205H



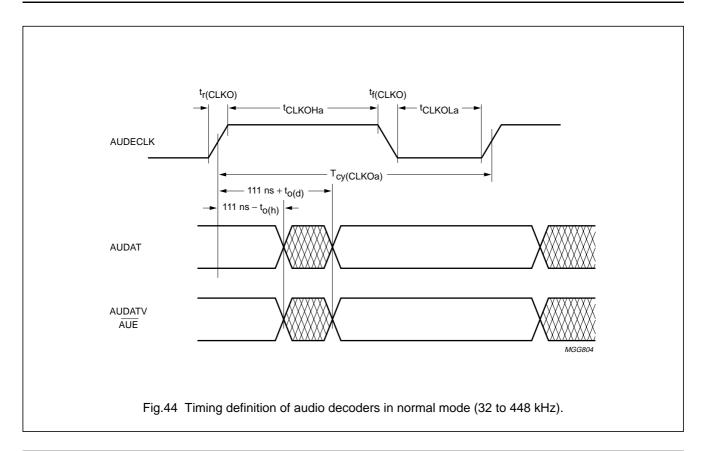
SAA7205H

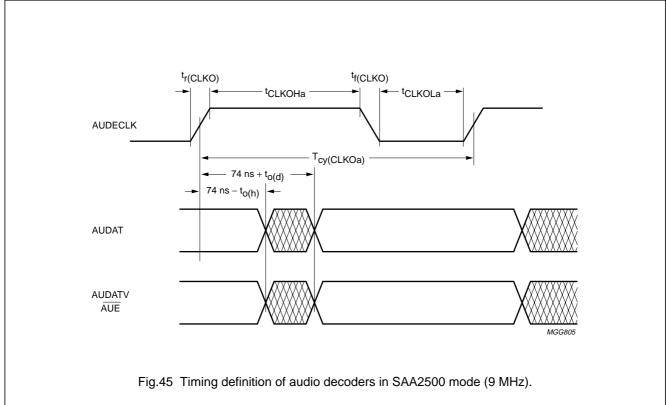


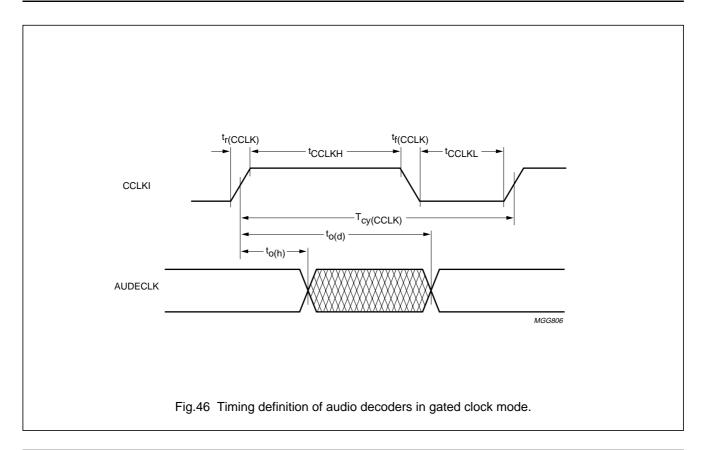

SAA7205H

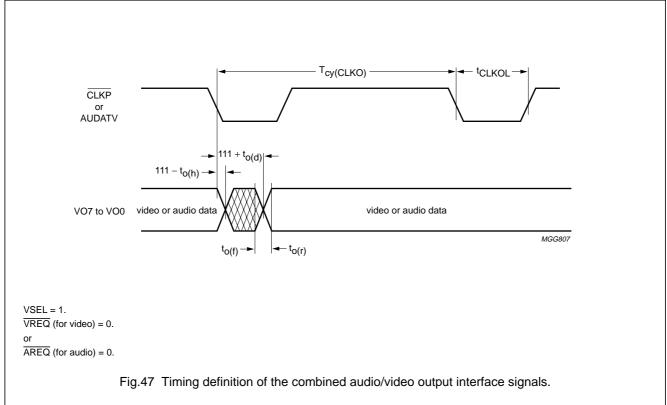


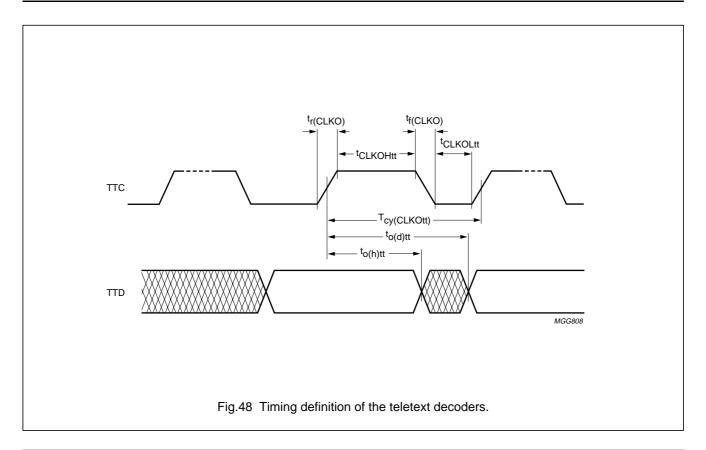
SAA7205H

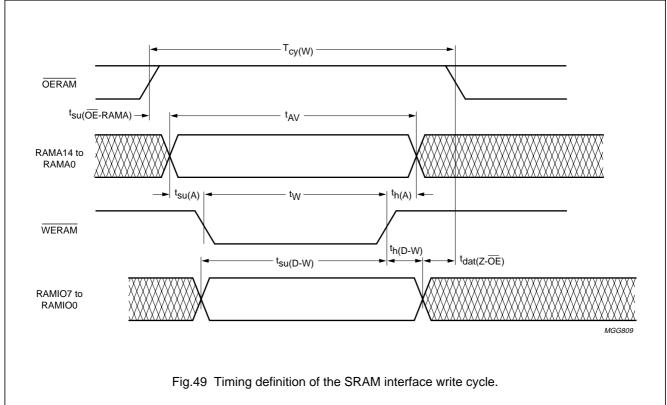



SAA7205H

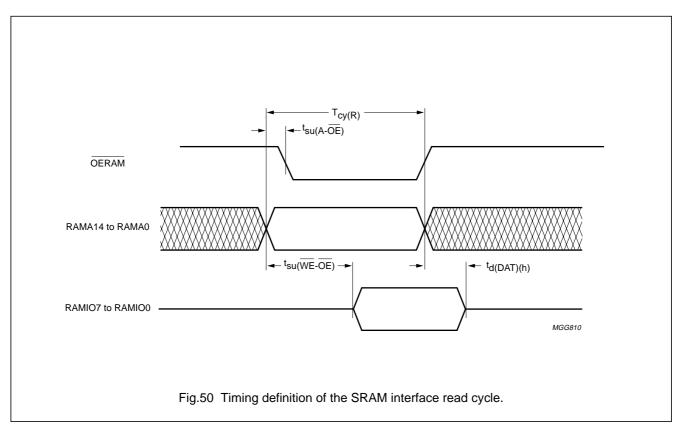



SAA7205H




SAA7205H

SAA7205H



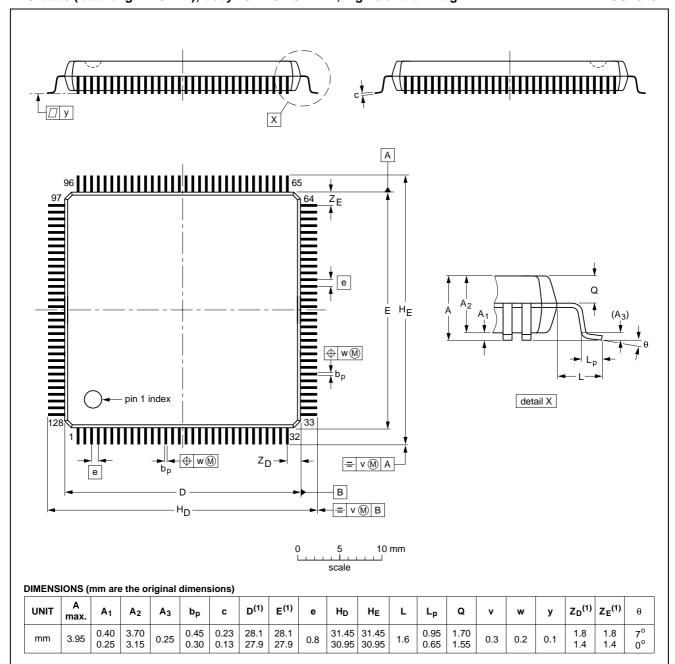
Philips Semiconductors Preliminary specification

MPEG-2 systems demultiplexer

SAA7205H

13 APPENDIX

Table 14 Parser states


STATE NUMBER	STATE NAME	MPEG-2 FIELD SIZE (BITS)	
1	reset	indefinite	
2	sync	sync 8	
3	indicators 16		
4	flag_n_continuity 8		
5	adaption_field/af_length 8		
6	adaption_field/flags 8		
7	adaption_field/prg_clk_ref 48		
8	adaption_field/org_prg_clk_ref 48		
9	adaption_field/private_segment 8K		
10	adaption_field/splice_countdown 8		
11	adaption_field/af_extension	adaption_field/af_extension 8K	
12	adaption_field/af_stuffing 8K		

SAA7205H

14 PACKAGE OUTLINE

QFP128: plastic quad flat package; 128 leads (lead length 1.6 mm); body 28 x 28 x 3.4 mm; high stand-off height

SOT320-2

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE	REFERENCES				EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT320-2						95-02-04 96-03-14

Philips Semiconductors Preliminary specification

MPEG-2 systems demultiplexer

SAA7205H

15 SOLDERING

15.1 Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398 652 90011).

15.2 Reflow soldering

Reflow soldering techniques are suitable for all QFP packages.

The choice of heating method may be influenced by larger plastic QFP packages (44 leads, or more). If infrared or vapour phase heating is used and the large packages are not absolutely dry (less than 0.1% moisture content by weight), vaporization of the small amount of moisture in them can cause cracking of the plastic body. For more information, refer to the Drypack chapter in our "Quality Reference Handbook" (order code 9397 750 00192).

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

15.3 Wave soldering

Wave soldering is **not** recommended for QFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.

If wave soldering cannot be avoided, the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The footprint must be at an angle of 45° to the board direction and must incorporate solder thieves downstream and at the side corners.

Even with these conditions, do not consider wave soldering the following packages: QFP52 (SOT379-1), QFP100 (SOT317-1), QFP100 (SOT317-2), QFP100 (SOT382-1) or QFP160 (SOT322-1).

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

15.4 Repairing soldered joints

Fix the component by first soldering two diagonally-opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

Philips Semiconductors Preliminary specification

MPEG-2 systems demultiplexer

SAA7205H

16 DEFINITIONS

Data sheet status				
Objective specification	This data sheet contains target or goal specifications for product development.			
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.			
Product specification	This data sheet contains final product specifications.			
Limiting values				
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or				

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

17 LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Philips Semiconductors – a worldwide company

Argentina: see South America

Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,

Tel. +61 2 9805 4455, Fax. +61 2 9805 4466

Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,

Tel. +43 1 60 101, Fax. +43 1 60 101 1210

Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,

220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773

Belgium: see The Netherlands **Brazil:** see South America

Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,

51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102

Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,

Tel. +1 800 234 7381

China/Hong Kong: 501 Hong Kong Industrial Technology Centre,

72 Tat Chee Avenue, Kowloon Tong, HONG KONG,

Tel. +852 2319 7888, Fax. +852 2319 7700 **Colombia**: see South America

Czech Republic: see Austria

Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,

Tel. +45 32 88 2636, Fax. +45 31 57 1949 **Finland:** Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615800, Fax. +358 9 61580/xxx

France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,

Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427

Germany: Hammerbrookstraße 69, D-20097 HAMBURG,

Tel. +49 40 23 53 60, Fax. +49 40 23 536 300

Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,

Tel. +30 1 4894 339/239, Fax. +30 1 4814 240

Hungary: see Austria

India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722

Indonesia: see Singapore

Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000. Fax. +353 1 7640 200

Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180,

Tel. +972 3 645 0444, Fax. +972 3 649 1007

Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557

Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,

Tel. +81 3 3740 5130, Fax. +81 3 3740 5077

Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415

Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,

Tel. +60 3 750 5214, Fax. +60 3 757 4880 **Mexico:** 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,

Tel. +9-5 800 234 7381 Middle East: see Italy Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,

Tel. +31 40 27 82785, Fax. +31 40 27 88399

New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,

Tel. +64 9 849 4160, Fax. +64 9 849 7811 **Norway:** Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341

Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474

Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327

Portugal: see Spain Romania: see Italy

Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW,

Tel. +7 095 755 6918, Fax. +7 095 755 6919

Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,

Tel. +65 350 2538, Fax. +65 251 6500

Slovakia: see Austria Slovenia: see Italy

South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,

2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,

Tel. +27 11 470 5911, Fax. +27 11 470 5494

South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 829 1849

Spain: Balmes 22, 08007 BARCELONA, Tel. +34 3 301 6312. Fax. +34 3 301 4107

Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,

Tel. +46 8 632 2000, Fax. +46 8 632 2745

Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,

Tel. +41 1 488 2686, Fax. +41 1 481 7730

Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI. Taiwan Tel. +886 2 2134 2870, Fax. +886 2 2134 2874

Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,

Tel. +66 2 745 4090, Fax. +66 2 398 0793

Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,

Tel. +90 212 279 2770, Fax. +90 212 282 6707

Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,

252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461

United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,

Tel. +1 800 234 7381 Uruguay: see South America

Vietnam: see Singapore

Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,

Tel. +381 11 625 344, Fax.+381 11 635 777

For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

Internet: http://www.semiconductors.philips.com

© Philips Electronics N.V. 1997

SCA53

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

547047/1200/01/pp84

Date of release: 1997 Jan 21

Document order number: 9397 750 00924

Let's make things better.

